
Machine Learning-based End-to-End QoE
Monitoring Using Active Network Probing

Gilson Miranda Jr.∗†, Esteban Municio∗, Johann M. Marquez-Barja∗, Daniel Fernandes Macedo†
∗University of Antwerp - imec, IDLab, Faculty of Applied Engineering - Antwerp, Belgium
†Universidade Federal de Minas Gerais - Computer Science Department - Minas Gerais, Brazil

E-mail: {gilson.miranda, esteban.municio, johann.marquez-barja}@uantwerpen.be, damacedo@dcc.ufmg.br

Abstract—Video on Demand (VoD) is responsible for a signif-
icant amount of traffic on IP networks. To meet users’ expecta-
tions, network operators need means to monitor and to identify
when service quality is degraded in order to take actions to
avoid customer churn. Many proposals in the literature correlate
network Quality of Service (QoS) metrics with indicators of user
Quality of Experience (QoE). However, most solutions cannot
monitor end-to-end conditions without modification on video
player applications or require deep packet inspection techniques,
which may raise privacy issues. In previous work, we proposed
a method to estimate QoE using active ICMP probing, which is
widely supported by network devices and can be used for end-
to-end network measurements. In this work, we improve our
previous method by adding a secondary model that operates over
the first step of QoE inferences. We also extend the evaluation
of our approach by using two wireless and wired testbeds,
reporting our results for different end-to-end setups subject to
distinct connectivity conditions. Finally, we identify and discuss
the advantages and limitations of our methods and assess their
suitability in real-world production deployments.

Index Terms—DASH Video, QoE, Machine Learning

literature lack the ability to monitor the last-mile link, which
in many cases is the network bottleneck, especially in wireless
networks [6]. Therefore, QoE monitoring methods that neglect
the last mile may be unable to detect degraded QoE.

User satisfaction is highly influenced by events such as
video playback stalls, initial buffering delay, and oscillations
in video quality [7]. Using client-side information to estimate
user QoE is one of the approaches found in the literature
[8], [9]. The problem with client-side QoE monitoring is that
it requires changes in video players or the deployment of
additional software on clients or servers. With network-only
techniques, on the other hand, providers do not need to have
explicit agreements with the content owners to improve the
user QoE [5]. Further, many existing works require extensive
knowledge about content characteristics or rely on technology-
specific information (such as TCP headers, Wi-Fi link-layer
counters) [10]–[12]. This makes it difficult to deploy such
solutions on Internet Service Providers (ISPs) and more het-
erogeneous networks since they require access to the content
for preprocessing or access to input metrics that are not present
across different network technologies.

In previous work, we proposed a method to perform end-
to-end QoE inference for VoD using active probing and an
ML model that takes network QoS as input and estimates
user QoE [13]. By using Internet Control Message Protocol
(ICMP) probing, it also monitors the last-mile link, enabling
network operators to identify issues between a Wi-Fi Access
Point (AP) and a client. In the previous work, we used an
emulated environment to collect data for model training and
evaluation. The setup was useful for prototyping and parallel
execution of experiments, allowing us to collect over 60,000
video sessions with distinct network conditions. This setup
allowed us to identify the effect of different network QoS
conditions on user QoE.

The contributions of this work are two-fold: first, we im-
proved our previous model by evaluating more features that
could offer better inferences and selected those that improved
most the model accuracy. Secondly, this work validates and
extends our previous emulated environment results, demon-
strating the capacity of the method to estimate QoE using
ICMP probing to measure network QoS conditions. Our eval-
uation comprises both wired and wireless network segments.
The evaluation of our QoE inference method is carried out
in a reproducible manner using two different real-world open

I. INTRODUCTION

Video on Demand (VoD) accounts for significant amounts 
of traffic over the Internet. Forecasts show that video traffic 
will comprise over 80% of all IP traffic by 2022 [1]. In order to 
keep users satisfied with their networking experience and avoid 
customer churn, content and network operators must be able to 
identify when user experiences are unsatisfactory. Because of 
the high relevance of VoD with the widespread consumption of 
services such as Netflix, YouTube, and Prime Video, network 
operators and researchers have been seeking ways to monitor 
user-perceived quality for such services [2]. However, network 
Quality of Service (QoS) metrics like bandwidth, delays, or 
Packet Loss Ratio (PLR) do not translate directly into the user-
perceived quality of a VoD service [3]. Instead, the concept of 
Quality of Experience (QoE) is used to measure or estimate 
the user’s subjective perception of a service.

QoE is defined by the International Telecommunication 
Union (ITU) as the degree of user satisfaction (delight or 
annoyance) with an application or service [4]. Previous work 
has shown that the relation between network QoS and QoE 
is not linear, and Machine Learning (ML) methods have been 
employed along the last decade to perform the mapping of 
objective network or application QoS metrics into objective 
or subjective QoE indicators [5]. Many proposals in the



testbeds: CityLab1 [14] as smart city/wireless testbed, and
Virtual Wall2 as a cloud testbed. For the wireless domain,
we perform experiments using indoor and outdoor nodes, with
different levels of noise and link conditions (e.g. suffering from
Wi-Fi interference and signal oscillations existing in the city of
Antwerp). For the wired domain, we deploy high-performance
nodes to deliver video content from a catalog.

This work validates and extends our previous emulated envi-
ronment results, demonstrating that the capacity of the method
to estimate the quality level selected by the video client still
stays within expected accuracy levels even in a realistic, large-
scale scenario comprising both wired and wireless network
segments. The new experiments highlighted the effects of link
asymmetry on inference accuracy as observed on emulated
setup. We added a secondary model that receives the inferred
values and statistics about such inferences to further improve
the accuracy of the QoE estimations. Finally, we discuss the
advantages and limitations of our QoS inference model while
ensuring the reproducibility of the experiments.

II. RELATED WORK

Methods for QoE inference for video applications based
on network measurements have been studied for many years.
Such methods can provide insights for network operators
about the experience being delivered to the users. Approaches
based on Deep Packet Inspection (DPI) to reconstruct the
video sessions and estimate stalls or quality switches are
becoming infeasible with the wide adoption of encryption
protocols [15]. To overcome these limitations, some proposals
rely on the analysis of packet counters, the volume of UDP
and TCP packets, and other indirect measurements. Such
methods have been successfully used for estimating playback
stalls, and video resolution for YouTube traffic [16], [17].
Although playback stalls represent one of the main causes
for QoE degradation [18], video playback in low resolution
or constant resolution changes can also severely hinder user
experience [7].

The ITU-T P.1203 Recommendation describes models for
quality assessment that comprise stalls, video resolution,
resolution changes, and other information to provide better
estimates of user experience with streamed media [8]. The
work by Khokhar et al. [19] presents an ML-based method
that takes network-level measurements and estimates QoE (in
terms of Mean Opinion Score (MOS)) using ITU-T P.1203
models, for YouTube traffic. The input for the ML model
comprises up to 48 features, including bandwidth, Round-
Trip Time (RTT), jitter, packet inter-arrival times, along with
features inferred from the traffic traces. Ul Mustafa et al. [20]
also employ the ITU-T P.1203 to label a dataset, and train
models that take packet-level statistics as input and classify
QoE as poor, average, or good.

A common approach to creating training datasets is to use
the Traffic Control (TC)3 tool to insert network impairments

1https://doc.lab.cityofthings.eu/wiki/Main Page
2https://doc.ilabt.imec.be/ilabt/virtualwall/
3https://man7.org/linux/man-pages/man8/tc.8.html

between VoD server and client, and obtain a varied range
of network-level QoS conditions [13], [19]–[21]. However, in
many proposals the methods to perform the monitoring on real
deployments are not specified [19], [20]. Active probing using
specialized tools has been previously used to obtain network-
level measurements, and then map such measurements into
indicators of user experience [21]. A common issue with
current monitoring tools is on how to cover the last mile of the
end-to-end connection between server and client since such
tools usually require agents to be installed on the device in
order to perform measurements.

III. QOE INFERENCE USING ICMP PROBING

We proposed a method for QoE monitoring that uses the
widely supported ICMP protocol, which allows us to per-
form end-to-end measurements through active probing [13].
Figure 1 gives an overview of our method. We consider a
context where small-scale Content Delivery Networks (CDNs)
are deployed within the domain of an ISP. The server offers a
VoD service through Dynamic Adaptive Streaming over HTTP
(DASH), which is the method used by the main VoD services
nowadays. The ISP has no access to server logs but can deploy
a Probing Module (PM) to perform active probing to the server
and the client. The ISP can also configure routes in its domain
so the majority of the probing flow follow the same route as
the video flow.

CDN-ISP

RTT
Jitter
PLR

QoE ModelQoE ModelQoE Model
MOS

QoE Models

PQ

DASH
Server

Probing
Module

DASH Client

Fig. 1. Overview of the QoE inference method

The PM continuously measures the RTT, jitter, and PLR
between server and client by using ICMP probing. This
allows us to perform end-to-end measurements, as long as
no restrictions are actively applied by any device. The PM
runs concurrent threads independently probing the destination
in adjustable intervals. A coordinator thread aggregates the
results from the threads and adjusts the interval between
probing messages based on the observed RTT values. This way
the PM is able to obtain 1000 samples in the time window
of 30 seconds, dynamically adjusting the probing frequency
as network conditions change. Measurements older than 30
seconds are discarded, avoiding excessive resource usage.

Statistics about RTT, jitter, and PLR are given as input to
ML models based on an ensemble method of regression trees,
specifically eXtreme Gradient Boosting (XGBoost) [22]. We
selected XGBoost as it has shown better performance than
other methods across a variety of ML problems [23]. The



model maps the input QoS information into an MOS value
between 1 and 5, based on ITU-T P.1203 Recommendation [8].
Since the model is based on supervised learning, it requires
a labeled dataset for training. Therefore, we created such a
dataset using an emulated setup, detailed in Section IV-B.

A. Improvements Over our Previous Model

In the previous work, our model received as inputs the
mean RTT, mean jitter, and PLR over 1000 probing attempts
in a window of 30 seconds. We evaluated other methods to
aggregate such measurements and identified that median RTT,
median jitter, as well as the 90th percentiles of RTT and jitter
provided better results. Moreover, during our initial experi-
mentation using the testbed, we identified that during sessions
with sub-optimal QoE the inferred MOS also showed higher
variation, and thus, higher standard deviation between inferred
values along time. Therefore, incorporating such information
into the model would be useful to improve its accuracy.

Figure 2 gives an overview of the updated inference method,
composed of two models. Both models consume the same QoS
statistics from the PM, i.e. median RTT, 90th percentile of
RTT, median jitter, 90th percentile of jitter, and PLR. The
Primary Model executes first, returning one MOS estimate
each second, based on the most recent QoS statistics. The
per-second MOS estimates from the Primary Model are ac-
cumulated by the Postprocess module, which generates six
statistics: standard deviation of MOS values for the last 10, 20,
and 30 seconds; and mean MOS values for the last 10, 20, and
30 seconds. After receiving the first output from the Primary
Model the Postprocess module already starts generating the
first statistics, allowing the Secondary model to run. However,
only after the initial 30 seconds all the values can be calculated
with the correct amount of data. Nonetheless, we did not
observe significant errors caused by this initialization process
in our experiments, and its duration is negligible in most cases.

Q
oS

Probing Module

. . .

Primary Model

. . .

Secondary Model

rtt_median
rtt_90th

jitter_median
jitter_90th

PLR

Postprocess
mos_std_10s
mos_std_20s
mos_std_30s

mos_mean_10s
mos_mean_20s
mos_mean_30s

MOS Pass 1

MOS
Inference

Fig. 2. Overview of the inference model.

The Secondary Model consumes the QoS statistics from the
PM, the most recent MOS estimate provided by the Primary
Model (MOS Pass 1), and concatenates with the statistics
generated by the Postprocess module. The output of the
Secondary Model is the final inference of MOS. The training

of the Secondary Model requires augmenting the dataset with
the MOS values estimated by the Primary Model. We detail
the training process and how we split the dataset in Section
IV-B. The performance achieved by both models in terms of
inference accuracy is addressed in Section V.

IV. EXPERIMENTAL SETUP

This section first presents the testbeds. Later on, it details
the data collection using the emulated environment to create
the training dataset and train the models. Finally, it describes
the specific setups of the experiments.

A. Virtual Wall and CityLab Testbeds

There are several testbeds for network experimentation
on different domains such as Cloud [24], IoT [25], Smart
Highways [26] or Smart Cities [27]–[29]. The experiments in
this work were carried using the Virtual Wall and the CityLab
testbeds, (see Figure 3). Virtual Wall is a cloud deployment at
Ghent University, while CityLab consists of dozens of nodes
at different locations in the city of Antwerp.

53Km

Virtual Wall Testbed

CITYLab

Ghent

Antwerp

Fig. 3. Virtual Wall and CityLab testbeds in Belgium

Virtual Wall offers a wide range of node types, with over
10 different configurations and flavors. The nodes used in
our experiments are the pcgen2 nodes with 2 Quad-core
Intel E5520 2.2GHz CPUs and 12GB of RAM. For more
information about both testbeds, we recommend the imec-
iLab.t documentation4. CityLab nodes are composed of PC
Engines apu2c45 boards with an AMD GX-412TC 1GHz
Quad-core CPU and 4GB DDR-1333 MHz of RAM. These
nodes are equipped with multiple wireless cards of different
technologies such as Wi-Fi, LoRa, and Dash 7.

B. Dataset Creation and Model Training

We created the dataset by using the emulated infrastructure
shown in Figure 4. The three components were deployed as
containers, and network impairments between DASH Server,

4https://doc.ilabt.imec.be/ilabt/index.html
5https://pcengines.ch/apu2c4.htm



PM, and DASH Client were inserted using the TC tool for
Linux. The DASH server offered a catalog of 15 videos
described in Table I, encoded in the quality levels described
in Table II, using the H.264 codec, with no audio track and
video segments of four seconds. The DASH client was based
on the DASH Industry Forum reference player6 version 4.0.0,
modified to record playback statistics.

DASH
Server

Probing Module

RTT
Jitter
PLR

Emulated Link

DASH Client

Database

Network Emulator

BW Delay PLR

Fig. 4. Emulated setup for dataset creation, model training, and initial
evaluation

TABLE I
SAMPLE VIDEOS

Video Duration Type
Another World (another) 00:03:11 Nature
Samsung: Around The World (aworld) 00:05:39 Documentary
Football Barcelona (barcelona) 00:03:14 Sports
Power of Curve (curve) 00:03:15 Promotional
Phantom Flex (flex) 00:03:07 Promotional
Garden (garden) 00:03:05 Promotional
Jimix Put Your Hands Up (jimix) 00:03:56 Music Video
Lumix (lumix) 00:03:07 Documentary
Slam Dunk (slam) 00:02:56 Sports
Surfing (surfing) 00:02:59 Sports
Lovely Swiss (swiss) 00:03:41 Documentary
Travel With My Pet (travel) 00:02:35 Documentary
TravelXP HDR/HLG (travelxp) 00:05:00 Documentary
Life Untouched (untouched) 00:03:18 Nature
7 Wonders Of The World (wonders) 00:03:51 Documentary

All videos obtained from http://4kmedia.org

With the emulated setup we executed the video sessions
using Firefox web browser while recording network measure-
ments and video playback quality metrics once per second
using a custom script. At the end of this process, we had a
dataset containing network QoS measurements and the video
playback characteristics they generated. We labeled the dataset
following the ITU-T P.1203 Recommendation, which provides
an estimate of MOS for a video session encompassing multiple
characteristics such as playback stalls, video quality switches,
video resolution played, among others. For this, we relied on
the software7 provided by Robitza et al. [30] and Raake et
al. [31]. For this work we used the mode 3 MOS estimation
on the P.1203 software, instead of the mode 0 of our previous

6https://github.com/Dash-Industry-Forum/dash.js
7https://github.com/itu-p1203/itu-p1203

work, resulting in a more comprehensive estimation of the
MOS of the video sessions. However, this may turn the
function to be approximated by our inference model more
complex, and therefore, the estimation error can be slightly
higher than the observed in the previous work.

TABLE II
VIDEO REPRESENTATIONS (QUALITY LEVELS)

Representation Resolution Bitrate
0 320x180 200 kbps
1 320x180 400 kbps
2 480x270 600 kbps
3 640x360 800 kbps
4 640x360 1,000 kbps
5 768x432 1,500 kbps
6 1024x576 2,500 kbps
7 1280x720 4,000 kbps
8 1920x1080 8,000 kbps
9 3840x2160 12,000 kbps

The resulting dataset contained approximately 115,000
video sessions and over 23 million data points. We split the
dataset into three parts, being 40 % for the training of the
Primary Model (using the other 60 % for its evaluation), 40
% for the training of the Secondary Model, and the remaining
20 % to evaluate both models combined. We used the method
of random search [32] to define the hyperparameters for each
model. Those hyperparameters are configurations that cannot
be inferred from the data during training and impact model
accuracy and generalization capacity. The hyperparameters
defined for each model, and details of the random search
execution are presented in Section V-A.

C. Testbed Setup

We deployed the DASH Server container on a Virtual Wall
node running the NGINX Server [33], and connected it to a
CityLab node that operated as Wi-Fi AP using hostapd8. The
server offered a subset of four videos from the emulated ex-
periments: another, barcelona, jimix, and travel. We connected
the DASH Server to the AP using a Generic Routing Encap-
sulation (GRE) tunnel over IPv6, which delivered excellent
performance throughout the experiments. Our measurements
showed a mean RTT of 3.01 ms, with 25 µs of jitter, and
0% PLR in all tests. The effective throughput measured using
iperf39 was over 700 Mbps for UDP and TCP traffic.

We used the five setups described below for the experiments
in CityLab. Node locations and further details can be found
on CityLab documentation. For the outdoors deployments,
we show the node pairs in Figure 5. We configured the
AP on channel 6 (2,437 MHz) in all setups, using Atheros
(ath10k) QCA9880 cards operating in IEEE 802.11g mode to
evaluate the method with more challenging settings. Table III
shows the link characteristics between the node pairs during
each experiment. The values are estimates of the link quality

8https://w1.fi/hostapd/
9https://github.com/esnet/iperf



between nodes provided by the CityLab testbed, and although
they provide an indication of usual link quality, they may not
reflect the exact condition during the experiments.

TABLE III
LINK QUALITY REPORTED BY CITYLAB

Setup Node Pair Avg. RSSI Reliability

1 6 → 72 -52.55 dBm 99.00%
72 → 6 -51.66 dBm 94.99%

2 71 → 6 -48.45 dBm 94.22%
6 → 71 -51.40 dBm 97.61%

3 24 → 28 -73.85 dBm 98.40%
28 → 24 -70.43 dBm 64.53%

4 14 → 18 -85.22 dBm 80.08%
18 → 14 -80.48 dBm 71.54%

5 34 → 35 -57.54 dBm 98.20%
35 → 34 -55.27 dBm 20.16%

We also analyzed the number of other networks in the range
of each node and operating on the same channel. Traffic on
those networks can cause interference and affect the quality
of the video sessions in a similar way as

• Setup 1: nodes 6 (AP) and 72 (Client). Indoors deploy-
ment with nodes in close proximity, having 40 other APs
in range, being 6 of them on the same channel. The same
networks are detected by the AP and the client.

• Setup 2: nodes 71 (AP) and 6 (Client). Indoors deploy-
ment with nodes in close proximity. 37 other APs in range
of the AP, 9 on the same channel. 41 other APs in range
of the client, 6 on the same channel.

• Setup 3: nodes 24 (AP) and 28 (Client). Outdoors
deployment with other 50 APs in range of the AP, 1 on
the same channel. 20 other APs can be detected by the
client, being 5 on the same channel.

• Setup 4: nodes 14 (AP) and 18 (Client). Outdoors
deployment. 107 other APs in range of the AP, being
10 on the same channel. 39 other APs in range of the
client, 4 on the same channel.

• Setup 5: nodes 34 (AP) and 35 (Client). Outdoors
deployment. 37 APs in range of the AP, 7 on the same
channel. 144 APs in range of the client, 27 on the same
channel.

Node 34
AP

Node 35
Client

Setup 5 

Setup 3 

Node 28
Client

Node 24
AP

Setup 4 

Node 18
Client

Node 14
AP

Fig. 5. Setups 3 to 5 using outdoors nodes of CityLab

V. RESULTS

This section first describes the results obtained with the
inference model, highlighting the improvement achieved over
the method described in our previous work. Then we present
the results of the experiments using the testbed setups.

A. Model Training and Initial Evaluation

The first step of our model training process consists of
hyperparameter tuning with 100 iterations of random search.
At each iteration, a random set of hyperparameters was evalu-
ated using 3-fold Cross-Validation (CV). The hyperparameter
set that resulted in lower Root Mean Square Error (RMSE)
on CV was selected for the final model training. Table IV
describes the parameters that were evaluated and selected10.
The maximum number of trees was 100 in all cases.

TABLE IV
HYPERPARAMETERS SELECTED USING RANDOM SEARCH

Hyperparameter Evaluated Selected
Primary Secondary

colsample bytree uniform(0.1, 1) 0.94 0.90
colsample bylevel uniform(0.1, 1) 0.62 0.80
subsample uniform(0.1, 1) 0.42 0.59
learning rate loguniform(0.005, 0.5) 0.16 0.22
alpha uniform(1, 5) 2 3
max depth uniform(1, 5) 4 4

Table V shows the accuracy achieved by each model, for
each video, and the accuracy over data of all videos combined.
We evaluate model accuracy in terms of RMSE. We observe
that the Primary Model used in this work already reduces the
error marginally just by using a different set of input features.
By adding the Secondary Model to the method we can further
reduce the inference errors.

TABLE V
INFERENCE RMSE VALUES FOR EACH VIDEO

Video Model in [13] Primary Model Secondary Model
another 1.08 1.07 1.06
aworld 1.09 1.08 1.03
barcelona 1.15 1.14 1.12
curve 1.11 1.09 1.09
flex 1.08 1.08 1.04
garden 1.11 1.10 1.09
jimix 1.10 1.09 1.08
lumix 1.16 1.14 1.12
slam 1.12 1.11 1.09
surfing 1.07 1.06 1.01
swiss 1.09 1.07 1.05
travel 1.08 1.07 1.04
travelxp 1.11 1.10 1.07
untouched 1.09 1.08 1.04
wonders 1.11 1.10 1.08
Combined 1.09 1.08 1.05

10Further detail about XGBoost hyperparameters can be found in
https://sites.google.com/view/lauraepp/parameters



B. Testbed Results

For each setup described in Section IV-C we executed 20
repetitions for each video. Table VI presents the overall results
obtained. The first column shows the mean MOS achieved
across all sessions on each setup. The second column shows
the mean of inferred values, and the third column shows the
mean of RMSE values. The standard deviation for each metric
is shown in parentheses. The results show that setups 1, 2,
and 5 allowed video sessions with higher quality. Although
the testbed information shows a highly asymmetric link (in
terms of reliability) on setup 5, the MOS achieved during
the sessions and the inference accuracy indicates that the link
conditions were symmetric during our tests. On the other hand,
setups 3 and 4 had worse network conditions.

TABLE VI
RESULTS OBTAINED ON EACH SETUP

Setup Mean MOS Mean Inferred Mean RMSE
1 4.89 (0.26) 4.93 (0.10) 0.19 (0.22)
2 4.90 (0.27) 4.43 (0.56) 0.56 (0.55)
3 2.84 (0.41) 4.14 (0.67) 1.31 (0.61)
4 2.02 (0.23) 3.64 (0.57) 1.63 (0.57)
5 4.87 (0.29) 4.22 (0.45) 0.75 (0.46)

To further discuss the details of the inference method,
Figures 6, 7, 8, and 9 show the measured and inferred values
during some video sessions executed. The red lines show the
inferred MOS, and the black lines show the measured MOS
at the client’s video player. Figure 6 shows a session of the
“jimix” video on setup 1. The client constantly receives high
MOS, and we can observe that the inferences are close to
the measurements with slight oscillations. Figure 7 shows a
session of the “travel” video on setup 2. In that case, the
inferred values oscillate more, and in fact, for a period of
25 seconds at the beginning of the session there was a drop
in MOS. This indicates that the network conditions could be
improved in order to guarantee the highest possible QoE for
the whole session.

Comparing these results with those in Table VI, we observe
that the mean MOS on setup 1 was close to 5, similar to the
inferred MOS values, resulting in an RMSE of 0.19. On setup
2, where slightly more oscillations were observed, the mean
MOS was mostly high. However, the inferences presented
higher error than on setup 1, with an RMSE of 0.56. From
the values observed in Table VI, considering the means and
standard deviations, show that the method offers measurements
in line with the expected accuracy from Table V in most cases.

Sessions on setups 3 and 4 had MOS between 2 and 3. On
setup 3 the sessions had more oscillations, as shown in the
example of Figure 8 (a session of the “another” video on setup
3), and also on the standard deviation of mean inferred MOS
values. We observe that during some periods on Figure 8 the
inferred MOS values present higher errors. Nevertheless, for
most of the session duration, the error is within the expected
RMSE, and the oscillation level of inferences can also be used
as an indicator of sub-optimal user experience.

0
Time (s)

50 100 150 200

4

3

2

1

0

M
O

S

5

Setup 01 - Video "jimix" - Run 13

Measured
Inferred

Fig. 6. Sample session on setup 1 and video ”jimix”.

0 16014012010080604020

4

3

2

1

0

M
O

S

5

Measured
Inferred

Setup 02 - Video "travel" - Run 7

Time (s)

Fig. 7. Sample session on setup 2 and video ”travel”.

On setup 4 the mean MOS is stable across all experiments
but at lower values (2.02 with 0.23 of standard deviation).
We also observed the highest mean RMSE values, being the
worst performance obtained with our method, as shown in
the session of Figure 9. Similar to the previous case, the
high oscillation of the inferred values can also indicate QoE
issues during the video session. As we can see from Table
VI the inferences on setups 3 and 4 had the highest RMSE.
Both cases illustrate situations in which the method presented
the lowest accuracy. Nevertheless, a combined analysis of
the mean inferred values with the standard deviation of the
inferences can indicate that the session is ongoing with sub-
optimal MOS.

The inferred values shown in Figures 7, 8, and 9 show
higher oscillations than the measured values along time. This
is due to the fact that the measured value only changes when
the DASH adaptation algorithm switches to a different quality
level (or a stall occurs), while the inferred value is updated
every second, based on the most recent network measurements.
This makes the inferred values more sensitive to network
quality fluctuations.

The results from the model training phase, described in
Table V, show how the model accuracy could be improved
by selecting more relevant features and adding a second-layer
model. With the emulated setup, even though we used virtual
connections between containers with network impairments



0 25 50 75 100 125 150 175
Time (s)

4

3

2

1

0

M
O

S

Measured
Inferred

Setup 03 - Video "another" - Run 9

5

Fig. 8. One video session of the ”another” video on setup 3.

15010050 200 250 300 350

Setup 04 - Video "barcelona" - Run 4

0

Measured
Inferred

4

3

2

1

0

M
O

S

5

Time (s)

Fig. 9. One video session of the ”barcelona” video on setup 4.

generated by the TC tool, we were able to build a dataset and
train models that were applicable in real wireless deployments.
Based on this observation, further improvements can be made
on the method by increasing the complexity of the network
impairments inserted with TC (e.g. adding packet corruption
probability, packet duplication, reordering), or adding more
inference layers encompassing specific features of the tech-
nology used (e.g. Ethernet, WiFi, 4G, 5G).

VI. CONCLUSIONS

In this work, we propose and experimentally evaluate a
method for inference of QoE for DASH video based on ICMP
probing and Machine Learning. We improve our previous
method by adding a secondary model that reduces the infer-
ence error. We validate our results using the Virtual Wall and
CityLab testbeds, with five different wireless deployments. Re-
sults show that the model is effective in identifying situations
in which the user receives sub-optimal QoE, and therefore,
that the provider should take action. Such a system can be
employed, for example, for automated network management
based on QoE. On setups with more challenging network
conditions we observed higher inference errors, however, the
average MOS inferences and the high level of oscillations
showed by the standard deviation indicate a degraded QoE
situation. In future work, we aim to apply our method to

network management tools and optimize networks based on
inferred QoE.

ACKNOWLEDGMENT

This work was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001, CNPq (funding agency from
the Brazilian federal government), FAPEMIG (Minas Gerais
State Funding Agency), and São Paulo Research Founda-
tion (FAPESP) with Brazilian Internet Steering Committee
(CGI.br), grants 2018/23097-3 and 2020/05182-3.

The work has also been supported by the Horizon
2020 projects Fed4FIRE+ (Grant Agreement No. 723638),
5G-Blueprint (Grant Agreement No. 952189), and by the
FLEXNET project: “Flexible IoT Networks for Value Cre-
ators” (Celtic 2016/3), in the Eureka Celtic-Next Cluster.

REFERENCES

[1] Cisco, “White paper: Cisco Visual Networking Index: Forecast
and Trends, 2017–2022,” Cisco, 2018, Accessed on: Oct. 16,
2020. [Online]. Available: www.cisco.com/c/dam/m/en us/network-
intelligence/service-provider/digital-transformation/knowledge-network-
webinars/pdfs/1213-business-services-ckn.pdf

[2] M. Yang, S. Wang, R. N. Calheiros, and F. Yang, “Survey
on QoE assessment approach for network service,” IEEE
Access, vol. 6, pp. 48 374–48 390, 2018. [Online]. Available:
doi.org/10.1109/ACCESS.2018.2867253

[3] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative
relationship between quality of experience and quality of service,”
IEEE Network, vol. 24, no. 2, pp. 36–41, 2010. [Online]. Available:
doi.org/10.1109/MNET.2010.5430142

[4] I. T. U. ITU, “P. 10: Vocabulary for performance and quality of service,
amendment 2: New definitions for inclusion in recommendation itu-t p.
10/g. 100,” Int. Telecomm. Union, Geneva, 2008. [Online]. Available:
www.itu.int/rec/T-REC-P.10

[5] P. Juluri, V. Tamarapalli, and D. Medhi, “Measurement of quality
of experience of video-on-demand services: A survey,” IEEE
Communications Surveys and Tutorials, vol. 18, no. 1, pp. 401–418,
2016. [Online]. Available: doi.org/10.1109/COMST.2015.2401424

[6] Y. Chen, K. Wu, and Q. Zhang, “From qos to qoe: A tutorial
on video quality assessment,” IEEE Communications Surveys
Tutorials, vol. 17, no. 2, pp. 1126–1165, 2015. [Online]. Available:
doi.org/10.1109/COMST.2014.2363139

[7] P. Casas, M. Seufert, F. Wamser, B. Gardlo, A. Sackl, and R. Schatz,
“Next to You: Monitoring Quality of Experience in Cellular Networks
from the End-Devices,” IEEE Transactions on Network and Service
Management, vol. 13, no. 2, pp. 181–196, 2016. [Online]. Available:
doi.org/10.1109/TNSM.2016.2537645

[8] I. T. U. ITU, “ITU-T Rec P.1203: Parametric bitstream-based
quality assessment of progressive download and adaptive audiovisual
streaming services over reliable transport,” 2017. [Online]. Available:
www.itu.int/rec/T-REC-P.1203

[9] N. Barman and M. G. Martini, “QoE Modeling for HTTP
Adaptive Video Streaming-A Survey and Open Challenges,” IEEE
Access, vol. 7, pp. 30 831–30 859, 2019. [Online]. Available:
doi.org/10.1109/ACCESS.2019.2901778

[10] A. Khan, L. Sun, E. Ifeachor, J. O. Fajardo, F. Liberal, and
H. Koumaras, “Video quality prediction models based on video
content dynamics for H.264 video over UMTS networks,” International
Journal of Digital Multimedia Broadcasting, 2010. [Online]. Available:
doi.org/10.1155/2010/608138

[11] L. Qian, H. Chen, and L. Xie, “SVM-based QoE estimation
model for video streaming service over wireless networks,”
International Conference on Wireless Communications and
Signal Processing, (WCSP), pp. 1–6, 2015. [Online]. Available:
doi.org/10.1109/WCSP.2015.7341066



[12] I. Paudel, J. Pokhrel, B. Wehbi, A. Cavalli, and B. Jouaber,
“Estimation of video QoE from MAC parameters in wireless network:
A Random Neural Network approach,” International Symposium on
Communications and Information Technologies, (ISCIT), pp. 51–55,
2014. [Online]. Available: doi.org/10.1109/ISCIT.2014.7011868

[13] G. Miranda, D. F. Macedo, and J. M. Marquez-Barja, “A QoE
Inference Method for DASH Video Using ICMP Probing,” in
2020 16th International Conference on Network and Service
Management (CNSM), 2020, pp. 1–5. [Online]. Available:
doi.org/10.23919/CNSM50824.2020.9269120

[14] J. Struye, B. Braem, S. Latré, and J. Marquez-Barja,
“The CityLab testbed—Large-scale multi-technology wireless
experimentation in a city environment: Neural network-based
interference prediction in a Smart City,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2018, pp. 529–534. [Online]. Available:
doi.org/10.1109/INFCOMW.2018.8407018

[15] R. Huysegems, B. De Vleeschauwer, K. De Schepper, C. Hawinkel,
T. Wu, K. Laevens, and W. Van Leekwijck, “Session reconstruction
for HTTP adaptive streaming: Laying the foundation for network-based
QoE monitoring,” in 2012 IEEE 20th International Workshop
on Quality of Service, 2012, pp. 1–9. [Online]. Available:
doi.org/10.1109/IWQoS.2012.6245987

[16] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li,
“Stream-based Machine Learning for Real-time QoE Analysis of
Encrypted Video Streaming Traffic,” Proceedings of the 2019
22nd Conference on Innovation in Clouds, Internet and Networks
and Workshops, ICIN 2019, pp. 76–81, 2019. [Online]. Available:
doi.org/10.1109/ICIN.2019.8685901

[17] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, “Let me
decrypt your beauty: Real-time prediction of video resolution and
bitrate for encrypted video streaming,” in TMA 2019 - Proceedings of
the 3rd Network Traffic Measurement and Analysis Conference, 2019,
pp. 199–200. [Online]. Available: doi.org/10.23919/TMA.2019.8784589

[18] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
“A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp. 469–492,
2015. [Online]. Available: doi.org/10.1109/COMST.2014.2360940

[19] M. J. Khokhar, T. Ehlinger, and C. Barakat, “From network
traffic measurements to QoE for internet video,” IFIP
Networking Conference, pp. 1–9, 2019. [Online]. Available:
doi.org/10.23919/IFIPNetworking.2019.8816854

[20] R. Ul Mustafa, D. Moura, and C. E. Rothenberg, “Machine learning
approach to estimate video qoe of encrypted dash traffic in 5g networks,”
in 2021 IEEE Statistical Signal Processing Workshop (SSP), 2021, pp.
586–589. [Online]. Available: doi.org/10.1109/SSP49050.2021.9513804

[21] R. I. T. Da Costa Filho, W. Lautenschlager, N. Kagami, V. Roesler, and
L. P. Gaspary, “Network fortune cookie: Using network measurements
to predict video streaming performance and QoE,” 2016 IEEE Global
Communications Conference, GLOBECOM 2016 - Proceedings, pp. 2–
7, 2016. [Online]. Available: doi.org/10.1109/GLOCOM.2016.7842022

[22] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting
System,” ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2016. [Online]. Available:
doi.org/10.1145/2939672.2939785

[23] D. Nielsen, “Tree Boosting with XGBoost - Why does
XGBoost Win Every Machine Learning Competition?” Master’s
thesis, NTNU, 2016. [Online]. Available: ntnuopen.ntnu.no/ntnu-
xmlui/bitstream/handle/11250/2433761/16128 FULLTEXT.pdf

[24] J. Mambretti, J. Chen, and F. Yeh, “Next Generation Clouds, the
Chameleon Cloud Testbed, and Software Defined Networking (SDN),”
in 2015 International Conference on Cloud Computing Research
and Innovation (ICCCRI), 2015, pp. 73–79. [Online]. Available:
doi.org/10.1109/ICCCRI.2015.10

[25] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele,
and T. Watteyne, “FIT IoT-LAB: A large scale open experimental
IoT testbed,” in 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), 2015, pp. 459–464. [Online]. Available: doi.org/10.1109/WF-
IoT.2015.7389098

[26] J. Marquez-Barja, B. Lannoo, D. Naudts, B. Braem, C. Donato,
V. Maglogiannis, S. Mercelis, R. Berkvens, P. Hellinckx, M. Weyn
et al., “Smart Highway: ITS-G5 and C2VX based testbed
for vehicular communications in real environments enhanced by
edge/cloud technologies,” in EuCNC2019, the European Conference
on Networks and Communications. IEEE, 2019. [Online]. Available:
biblio.ugent.be/publication/8642435/file/8656511

[27] J. Struye, B. Braem, S. Latré, and J. Marquez-Barja, “The CityLab
testbed — Large-scale multi-technology wireless experimentation in a
city environment: Neural network-based interference prediction in a
smart city,” in IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2018, pp. 529–534.
[Online]. Available: doi.org/10.1109/INFCOMW.2018.8407018

[28] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and
P. Demeester, “City of things: An integrated and multi-technology
testbed for iot smart city experiments,” in 2016 IEEE International
Smart Cities Conference (ISC2), 2016, pp. 1–8. [Online]. Available:
doi.org/10.1109/ISC2.2016.7580875

[29] L. Sanchez, J. A. Galache, V. Gutierrez, J. M. Hernandez, J. Bernat,
A. Gluhak, and T. Garcia, “SmartSantander: The meeting point between
Future Internet research and experimentation and the smart cities,”
in 2011 Future Network Mobile Summit, 2011, pp. 1–8. [Online].
Available: ieeexplore.ieee.org/abstract/document/6095264

[30] W. Robitza, S. Göring, A. Raake, D. Lindegren, G. Heikkilä,
J. Gustafsson, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia,
K. Yamagishi, and S. Broom, “HTTP Adaptive Streaming QoE
Estimation with ITU-T Rec. P.1203 – Open Databases and Software,”
in ACM Multimedia Systems Conference, 2018. [Online]. Available:
doi.org/10.1145/3204949.3208124

[31] A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Göring, and B. Feiten,
“A bitstream-based, scalable video-quality model for HTTP adaptive
streaming: ITU-T P.1203.1,” in International Conference on Quality
of Multimedia Experience (QoMEX), May 2017. [Online]. Available:
doi.org/10.1109/QoMEX.2017.7965631

[32] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter
Optimization,” J. Mach. Learn. Res., vol. 13, no. null, p. 281–305, Feb.
2012. [Online]. Available: doi.org/10.5555/2188385.2188395

[33] W. Reese, “Nginx: The High-Performance Web Server and Reverse
Proxy,” Linux J., vol. 2008, no. 173, Sep. 2008. [Online]. Available:
doi.org/10.5555/1412202.1412204


