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Abstract—The plethora of heterogeneous and diversified ser-
vices in 5G and beyond requires from networks to be flexible,
adaptable, and programmable, i.e., to be able to correspondingly
adapt to changes. As human intervention might significantly
increase delays in MANagement and Orchestration (MANO)
operations, automation and intelligence become imperative for
orchestrating services and resources, especially the ones with
stringent requirements for latency and capacity, such as Vehicle-
to-Everything (V2X) services. As virtualization and Artificial
Intelligence (AI) promise to mitigate those challenges towards
enabling true automation in MANO operations, in this paper we
present our effort towards building and fully utilizing the real-
life testbeds, such as Smart Highway and Virtual Wall, located
in Belgium, to conduct realistic experimentation and validation
of distributed orchestration intelligence in a dynamic network
such as V2X system.

Index Terms—management and orchestration, NFV, AI, ML,
zenoh, testbeds, experimentation

I. INTRODUCTION AND MOTIVATION

With the arrival of contemporary technologies such as
Software Defined Networking (SDN), Network Function Vir-
tualization (NFV), and Multi-Access Edge Computing (MEC),
5G and beyond mobile communication systems are becoming
able to enhance existing use cases and business models, and
to foster new ones [1]. As networks are usually consisted
of a complex set of broad and heterogeneous devices and
resources that must be integrated to provide seamless service,
the traditional, inherently manual, network MANagement and
Orchestration (MANO) becomes impossible to maintain [2].
Given the heterogeneous and diversified nature of services
in 5G and beyond, with complex and potentially conflict-
ing demands, networks need to be flexible, adaptable, and
programmable, to be able to swiftly adapt to changes [3].
These requirements need to be supported by technologies,
such as virtualization [4] and Artificial Intelligence (AI) [2], in
particular Machine Learning (ML), to enable automation and
intelligence in the MANO of services, thereby coping with the
network complexity.

The potential of integrating AI/ML techniques to NFV
MANO systems, with the goal to enforce operations and
automate them, is well recognized and there are some impor-
tant research efforts invested to study this topic [3, 5, 6, 7].
However, there is still a gap in research when it comes to
experimentation and testing the true impact of AI/ML on the
optimization of NFV MANO operations. To this end, in this
paper we present our ongoing work towards building and fully
utilizing the potential of high-performance real-life testbeds,
such as Smart Highway1 [8] and Virtual Wall2, to pursue
testing and validation of distributed intelligence in a dynamic

1Smart Highway: https://www.fed4fire.eu/testbeds/smart-highway/
2Virtual Wall: https://www.fed4fire.eu/testbeds/virtual-wall/
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Fig. 1: The architecture of multi-domain AI-enhanced
management and orchestration system for V2X use cases.

network such as Vehicle-to-Everything (V2X) system. We
present the AI-enhanced MANO system for V2X services
in Fig. 1, with cloud and edge orchestration layers, which
are enabled to autonomously operate, but also to collaborate
and balance their operations towards achieving desired Key
Performance Indicators (KPIs).

Some of the reasons why an automated MANO in 5G and
beyond is necessary are:

• a demand for new use cases for industry 5.0, Industrial
Internet of Things (IIoT), and self-driving vehicles, which
require significantly extensive broadband, efficient, re-
silient, and reliable connectivity, and network availability
of five-nines [5];

• improving operational efficiency in NFV systems, as
network complexity significantly increases with hetero-
geneous and distributed resources and services [7];

• dynamic changes in KPIs happen due to fluctuations in
demands from verticals (e.g., IIoT, vehicular systems),
user mobility patterns, etc., thus, network needs to im-
prove its operation by learning from the environment and
optimizing itself towards the desired and promised KPIs
[5];

• complexity and heterogeneity, brought by combining
different technologies and verticals in 5G and beyond,
require NFV MANO systems that enable an intelligent
interplay between edge and cloud [5];

• NFV MANO operations (e.g., service placement, migra-
tion, fault recovery, scaling) need to be further optimized
and automated in 5G ecosystems with the help from
AI/ML, as traditional optimization techniques are com-



plex and lengthy, and heuristics are near-optimal, which
might make them both ineffective in swift response to
dynamic changes in the network [7]; and

• management and orchestration of computational re-
sources in 5G and beyond becomes a major challenge,
due to the practices of cloudification and virtualization
of core network functions, and partially radio access
network functions [3].

The integration of AI/ML into NFV MANO systems for 5G
and beyond is expected to mitigate most of the challenges
listed above, as it is now mature enough to provide efficient
solutions for complex optimization and prediction problems
[3]. If used in a suitable manner (e.g., very fine-grained AI
algorithms carefully chosen for operation in a specific network
domain), AI/ML can enable i) optimized service instantiation,
ii) learning utilization patterns for computational resources
of virtualized network services, iii) prediction models for
proactive resource allocation/relocation, and iv) optimized
service migration. Besides the aforementioned benefits, AI/ML
techniques impose some additional challenges that need to be
taken into account. Some of them are vulnerabilities in terms
of i) security, scalability, and transferability [7], which limit
the full potential of applying AI/ML to NFV MANO in 5G, ii)
high computation power that might not be available in resource
constrained edge nodes, and iii) need for quality data to train
the ML algorithms, as their performance on making decisions
(e.g., predicting, classification, taking actions) will depend on
how close was the training data to the actual data used in
production environments.

The AI-enhanced MANO system for V2X services that we
present in this paper, and illustrate in Fig. 1, consists of two
layers, i.e., cloud and edge. The system enables autonomous
MANO operations in each of the domains, but enforces an in-
terplay between them for offloading orchestration decisions, or
for retrieving data from distributed data engineering pipelines
available in all edge domains. Such a system orchestrates both
services and applications developed for various use cases, but
also Network Intelligent Functions (NIFs) that are represented
by adopted and integrated AI/ML models. Despite the emerg-
ing popularity of bringing intelligence to network management
and orchestration functions in 5G and beyond, most of the
works on validating the impact of AI/ML on MANO are based
on simulations. There is a gap between using synthetic data
and real data when it comes to training and validating/testing
AI/ML models, as real setups can create more realistic traces
for training, with higher probability of good performance when
deployed in production environments. However, building real-
istic Proof-of-Concepts (PoCs) is usually time-consuming and
expensive, while the number of scenarios that can be covered
is limited. On the other hand, simulators bring that flexibility
but mostly at the cost of not capturing all dynamics of real
environments. Thus, the real setups are fundamental to create
hybrid approaches that ensure that the performance of AI/ML
algorithms is not negatively impacted once they are dealing
with real data. One of the attempts to pursue testing of AI/ML
on the lifecycle management operation of scaling service
functions is presented by Baranda et al. [6], where a scaling
operation of virtual Content Delivery Network (vCDN) service
is triggered by AI/ML algorithms, thereby integrating AI/ML
into management platform of 5G-Transformer3. Thus, in this
paper we present and illustrate a realistic experimentation
environment that extends the scope of aforementioned PoC,

35G-Transformer - the project on 5G Mobile Transport Platform for
Verticals: http://5g-transformer.eu/

and enables studying and experimenting with AI-enhanced
operations of proactive placement, scaling, migration, and ter-
mination, of challenging V2X services, towards understanding
and resolving challenges imposed by AI/ML to overcome them
and improve those MANO operations.

II. ARCHITECTURE OF AI-ENHANCED MANAGEMENT AND
ORCHESTRATION SYSTEM

The architecture of multi-domain MANO system presented
in Fig. 1 is applicable to all distributed and heterogeneous soft-
warized networks whose operation stretches from edge to the
cloud, where services and applications are usually deployed
with microservice-based approach, and connectivity ensured
via different wireless technologies including 5G and beyond.
As such networks are usually characterized by distributed
resources belonging to different edge domains, which might
belong to different Mobile Network Operators (MNOs), we
follow the split between cloud (i.e., centralized) and edge
orchestrators, which are deployed in a relationship m : n,
m < n, m, n 2 N.

Thus, each edge domain that consists of one or multiple
edge nodes (i.e., MEC hosts) is governed by one edge or-
chestrator, which is, following ETSI NFV MANO framework,
in charge of lifecycle management (e.g., instantiation, scaling,
termination) of all underlying services, i.e., i) use case-related
services, ii) value-added services, and iii) NIFs that embody
AI/ML models. On the other hand, cloud orchestrator is rather
in charge of global optimization in the system, thereby making
less-granular decisions depending on the e.g., locations and
density of vehicles on the roads for our particular real-life
use case. One particular example of these decisions is service
migration from one edge domain to another, triggered by
higher density of vehicles (i.e., edge service consumers) in
one edge domain, or by need for optimization of energy
consumption in MEC hosts across edge domains.

Two MANO layers communicate with each other in the
two following ways: i) via Edge-Cloud reference point, which
is used to either offload decision-making tasks between two
orchestrators or to pass the already taken decision, and ii)
via message brokers, which exchange data in a controlled
way depending on the type of AI/ML technique that has
been applied in the system, thereby using that data to either
perform training or model adjustments and online learning.
Thus, depending on the time-scales of optimization (global or
local, i.e., edge-specific), it is required that MEC hosts can
connect data to AI/ML models in a transparent and efficient
way (e.g., using Zenoh framework introduced in Section III).
In case of federated learning, which is suitable for distributing
intelligence across edge nodes, thus deploying AI/ML agents
in edge nodes, we consider that each edge orchestrator trains
the local model based on the data collected from its own
domain. On the other hand, if security in data sharing between
two message brokers laying in two orchestration layers can be
preserved, multi-agent reinforcement learning may use data
collected from other edge domains to optimize policies.

Some examples of V2X services that might benefit from
such AI-enhanced NFV MANO system are:

• infotainment services, such as vCDN, where cloud or-
chestrator optimizes distributed vCDN deployment across
edge domains, based on the locations of vehicle (e.g.,
retrieved from the location service) and computational
resource utilization in each of the edges (e.g., collected
from message brokers in edges) [8, 9];

• emergency services, such as lane clearance for emergency
vehicles, where edge orchestrators optimize service oper-
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Fig. 2: The AI-enhanced management and orchestration system mapped to the real-life testbed environment (PE -
pre-processed/predicted energy, etc.).

ation on the edge level, while cloud orchestrator makes
sure that service is deployed in all edge domains that are
on the route affected by emergency situation [8, 10];

• maneuver recommendation services, which are services
that provide vehicles with recommendations about in
which lane to drive, when to merge or exit the lane, etc.,
taking into account location/speed/destination of vehicles
(e.g., retrieved from cloud orchestrator) [8, 11].

III. PROOF-OF-CONCEPT

In Fig. 2, we map the testbed components to the elements
of AI-enhanced MANO framework presented in Section II.
Starting from the edge, we provide the NFV infrastructure
in MEC hosts by virtualizing computational resources in
Roadside Units (RSUs), which are deployed along the E313
highway in Antwerp, Belgium, as a part of the Smart Highway
testbed [8]. We presented the collocation of MEC platforms
with RSU units in [9], and used it in the demo setup for
emergency V2X services in [10]. To make use of the com-
putational resources for performing lifecycle management of
edge V2X services, we deploy Kubernetes (K8s), where edge
orchestrator embodies the role of K8s master and extends it to
i) support cross domain operations, i.e., edge-cloud interaction,
and ii) receive dynamic triggers from AI/ML models deployed
in NIFs for optimizing MANO operations. Such K8s master
with extended and enhanced operation deploys services and
applications on designated worker nodes. In the PoC, both
master and worker nodes can be deployed on the bare metal,
as well as in Linux containers (LXC), which is a more suitable
practice for shared experimentation environments as testbeds.

For each type of data that is collected, i.e., computational
and network resource utilization, energy consumption, KPIs
measured at users’ side, and users’ locations, we also deploy
MEC value-added services, as per definition in ETSI MEC
[12], which perform data retrieval and pre-processing before
publishing them on Zenoh [13]. Given its minimal network
overhead (as little as 5B), and its small footprint (around
60kB on Arduino board), Zenoh is adopted in our PoC as a
framework for data engineering pipeline. In particular, Zenoh
provides a minimal set of primitives to deal with data in motion
(e.g., real-time stream of vehicles’ location/speed/destination),

data at rest (e.g., historic data for vehicles’ and edge nodes’
computational resource utilization and energy consumption)
and remote computations (e.g., on-demand calculation of the
best route and speed limit). Each edge and cloud orchestrator
acts as a subscriber for various types of data that can be stored
on edges, and used for training or online learning/optimization.

Furthermore, concerning the vehicle as a client, our current
PoC includes one vehicle that is capable to communicate with
the edge services via long range 4G (to be extended to 5G
in future). Thus, the client application is installed in the On-
board Unit (OBU) of the vehicle, and it utilizes Uu link to
exchange Cooperative Intelligent Transport System (C-ITS)
messages with services, and inform them about its location,
speed, heading, and destination.

Cloud orchestrator is running on the bare metal on top of
the Virtual Wall testbed, located in Ghent, Belgium (Fig. 2).
It is deployed as a web server (using Flask framework in
python), which is capable of i) processing decision-offloading
requests coming from the edge orchestrators, ii) location data
processing and publishing on Zenoh, iii) injecting decisions
on the north-bound interface of edge orchestrators to instruct
them to proactively migrate/relocate services from one edge to
another, and iv) receiving notifications from NIFs deployed on
the cloud, which enhance their operations and help them make
efficient decisions on managing underlying resources and edge
orchestrators.

In Fig. 3 we show the result of average response time, and
CPU utilization, of the vCDN server deployed on the MEC
host in our PoC. To stress the load and increase the number
of vehicles, we run Locust4 stress test inside the vehicle. We
can see that the number of vehicles that are simultaneously
requesting content from the same server affects the response
time, and CPU utilization as well. In case NIF predicts the
traffic demand, and the number of vehicles in this specific
geographic region, they are expected to optimize the operation
of an edge orchestrator, as it will perform horizontal scaling
and additional deployments of vCDN server on other MEC
hosts, so that users (vehicles) can still experience low response
time. As the response time consists of communication latency

4Locust: https://docs.locust.io/
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Fig. 3: Average response time and CPU utilization of vCDN
server deployed in our PoC.

(uplink and downlink, impacted by network load), and compu-
tational latency (affected by CPU load), its increase is mainly
affected by an increase in CPU utilization on edge nodes,
which needs to be carefully monitored and optimized e.g.,
by corresponding NIFs. As a part of our future work, we are
going to utilize this PoC to present the impact of various ML
models on the operation of orchestration operations, measured
at the client side in terms of response time, throughput, and
other relevant KPIs.

IV. CONCLUSION

To mitigate the challenges in MANO operations imposed
by human interventions (i.e., delayed operations, reactive ap-
proach) the automation and intelligence become an imperative
for orchestrating services and resources, especially the ones
with stringent requirements for latency and capacity, such as
those in V2X systems. In this paper, we presented our ongoing
work in building and utilizing the PoC on the real-life testbeds,
to pursue realistic experimentation and validation of the impact
that AI/ML have on the management and orchestration in
distributed and heterogeneous networks such as V2X.

V. ACKNOWLEDGEMENT

This work has been performed in the framework of the
European Union’s Horizon 2020 project DAEMON co-funded
by the EU under grant agreement No. 101017109, the Horizon
2020 Fed4FIRE+ project, Grant Agreement No. 723638, and
the Horizon 2020 5G-Blueprint project under Agreement No.
952189.

REFERENCES

[1] D. Soldani and A. Manzalini, “Horizon 2020 and Be-
yond: On the 5G Operating System for a True Digital
Society,” IEEE Vehicular Technology Magazine, vol. 10,
no. 1, pp. 32–42, 2015. doi: https://dx.doi.org/10.1109/
MVT.2014.2380581.

[2] ETSI, “Autonomous Networks, supporting
tomorrow’s ICT business,” ETSI White
Paper No. 40, 2020. Online [Available]:
https://www.etsi.org/images/files/ETSIWhitePapers/etsi-
wp-40-Autonomous-networks.pdf.

[3] D. M. Gutierrez-Estevez, M. Gramaglia, A. D.
Domenico, G. Dandachi, S. Khatibi, D. Tsolkas, I. Balan,
A. Garcia-Saavedra, U. Elzur, and Y. Wang, “Artificial
Intelligence for Elastic Management and Orchestration of
5G Networks,” IEEE Wireless Communications, vol. 26,
no. 5, pp. 134–141, 2019. doi: https://dx.doi.org/10.1109/
MWC.2019.1800498.

[4] A. Bujari, C. E. Palazzi, D. Polonio, and M. Zanella,
“Service Function Chaining: a lightweight container-
based management and orchestration plane,” in 2019 16th
IEEE Annual Consumer Communications Networking
Conference (CCNC), pp. 1–4, 2019. doi: https://dx.doi.
org/10.1109/CCNC.2019.8651862.

[5] M. Bagaa, T. Taleb, J. Riekki, and J. Song, “Collaborative
Cross System AI: Toward 5G System and Beyond,” IEEE
Network, vol. 35, no. 4, pp. 286–294, 2021. doi: https:
//dx.doi.org/10.1109/MNET.011.2000607.

[6] J. Baranda and et al., “On the Integration of AI/ML-
based scaling operations in the 5Growth platform,” in
2020 IEEE Conference on Network Function Virtu-
alization and Software Defined Networks (NFV-SDN),
pp. 105–109, 2020. doi: https://dx.doi.org/10.1109/NFV-
SDN50289.2020.9289863.

[7] D. M. Manias and A. Shami, “The Need for Ad-
vanced Intelligence in NFV Management and Orches-
tration,” Netwrk. Mag. of Global Internetwkg., vol. 35,
p. 365–371, Mar. 2021. doi: https://dx.doi.org/10.1109/
MNET.011.2000373.

[8] J. Marquez-Barja, B. Lannoo, D. Naudts, B. Braem,
V. Maglogiannis, C. Donato, S. Mercelis, R. Berkvens,
P. Hellinckx, M. Weyn, et al., “Smart Highway: ITS-G5
and C2VX based testbed for vehicular communications
in real environments enhanced by edge/cloud technolo-
gies,” in EuCNC2019, the European Conference on Net-
works and Communications, pp. 1–2, 2019. Available
[Online]:https://biblio.ugent.be/publication/8642435.
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[10] N. Slamnik-Kriještorac, G. M. Yilma, F. Zarrar Yousaf,
M. Liebsch, and J. M. Marquez-Barja, “Multi-domain
MEC orchestration platform for enhanced Back Situation
Awareness,” in IEEE INFOCOM 2021 - IEEE Confer-
ence on Computer Communications Workshops (INFO-
COM WKSHPS), pp. 1–2, 2021. doi: https://dx.doi.org/
10.1109/INFOCOMWKSHPS51825.2021.9484632.

[11] S. A. Ashraf, R. Blasco, H. Do, G. Fodor, C. Zhang, and
W. Sun, “Supporting Vehicle-to-Everything Services by
5G New Radio Release-16 Systems,” IEEE Communi-
cations Standards Magazine, vol. 4, no. 1, pp. 26–32,
2020. doi: https://dx.doi.org/10.1109/MCOMSTD.001.
1900047.

[12] ETSI, “Multi-Access Edge Computing (MEC);
Framework and Reference Architecture,” ETSI ISG
MEC, ETSI GS MEC 003 V2.1.1, 2019. Online
[Available]: https://www.etsi.org/deliver/etsi gs/MEC/
001 099/003/02.01.01 60/gs MEC003v020101p.pdf.

[13] Eclipse zenoh, “Project website: Eclipse zenoh,” 2020.
Online [Available]: https://zenoh.io, Last accessed on
2021-9-20.


