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ABSTRACT
As Cloud Computing (CC) branched areas such as Multi-access Edge Computing (MEC) and Fog
computing are still on growing research interest. The creation of new tools to improve quality and
speed the experimentation in such areas is a general interest. In this article, we propose COPA, an
experimenter-level container orchestration tool for networking testbeds. This tool provides a friendly
interface for the experimenter test container orchestration algorithms which can start, stop, copy, and
even migrate a container from one host to another. COPA also includes network/resources monitoring
to feed the experimenter’s orchestration algorithm so that it can make decisions based on real-time
environment information. Furthermore, the experimenter can automatize the experiment scenario setup and
deployment by pre-configuring in COPA. This tool helps the experimenter in testing different scenarios
and quickly changing experiment parameters. Considering these features, COPA aims to provide an
experimentation architecture to deploy and test container orchestration algorithms. Furthermore, we
provide a case study explaining how COPA can be a key tool in the MEC and Network Function
Virtualization (NFV) experimentation environments. This tool was already deployed in Federated Union
of Telecommunications Research Facilities for an EU-Brazil Open Laboratory (FUTEBOL) testbeds as
part of the control framework and was well validated by the project reviewers and partners.

INDEX TERMS testbed, multi-access edge computing, future networks, container, orchestration.

I. INTRODUCTION
Multi-access Edge Computing (MEC) is predicted to be one
of the core paradigms that will support 5G networks. MEC
will enable services to provide Ultra-Reliable Low-Latency
Communication (uRLLC) by bringing the services or part
of them closer to the network edge [1]. Taking the service
to the network edge decreases the physical distance to
the end-user increasing network bandwidth and decreasing
network latency. Moreover, to provide service cover along
the network edge, MEC datacenters must be smaller and
cheaper than the usual Cloud Computing (CC) datacenter,
enabling the construction of several instances. Therefore,
these instances with distributed resources sometimes will
lack to attend all the demands of service providers. Addi-
tionally, the services will need to be orchestrated depending
on their requirements among CC datacenters far from the
network edge.

MEC’s real advancements will bring to network com-

munications rely on the orchestration of either services
or Virtual Network Functions (VNFs) to provide uRLLC
[2]. The orchestration algorithms can prioritize different
characteristics for each type of service. For processing-
hungry applications, e.g., image processing, the orchestra-
tion algorithm must allocate the most processing powerful
resources available. For high network bandwidth usage
applications such as video streaming, the orchestration must
push the service to the edge of the network to relieve
data traffic from the network core. For that reason, the
European Telecommunications Standards Institute (ETSI)
MEC standard describes a component named "Multi-access
edge orchestrator", which will receive information from the
infrastructure and decide the better way to distribute the
services [3]. However, there are many types of applications
and several service requirements to be considered when
orchestrating. Therefore, it is expected a plethora of research
in MEC orchestration.
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Based on this rising community interest on MEC, re-
searchers and manufacturers could avail from tools to en-
hance and help the research on this field. For example, Wang
et al. and Leonini et al. proposed Weevil [4] and SPLAY
[5]. These tools offer a distributed-application development
environment and enable quick prototyping, deployment,
and workload generation in testbeds. For MEC research,
a platform to test various orchestration algorithms for ser-
vice or VNF placement will support the deployment and
analysis of the solutions. Orchestration algorithms can be
from several types such as linear programming [6], deep
learning [7], etc. The output these algorithms decide which
actions the orchestrator will take, e.g., migrate, replicate,
or even stop a service. When creating an orchestration
algorithm, a researcher designs a theory to support its
algorithm idea. After, the researcher also needs to evaluate
it in simulation [8] or a real-world environment [9] to test
the solution’s performance. Experiment environments can
be used to validate researcher’s theories supporting further
research advancements in MEC and other areas such as Fog
computing [10]–[12]. Testbeds are essential for the future
of computer network research because these environments
provide ready-to-use access to a variety of physical and
virtual resources enabling to test realistic network scenarios
[13]. However, because of the complexity of some testbeds,
users can find difficulties in using it. Therefore, an easy-
to-use, MEC orchestration tool focused on experimentation
could increase research possibilities and simplify experi-
ments deployment.

In this article, we present COPA: an experimenter-level
container orchestration tool for networking testbeds. COPA
was designed to attend the needs of the experimenters
to test new orchestration algorithms, e.g., MEC environ-
ments. In this way, an experimenter-level testbed layer for
container orchestration hands-on experimentation was pro-
jected. COPA focuses on providing container orchestration,
although MEC virtualization technologies do not include
only container but also Virtual Machines (VMs). Containers
are the most efficient way of virtualization, having a better
performance, such as I/O access and storage virtualization
[14], [15]. Furthermore, containers are lighter to migrate
and faster to deploy, facilitating orchestration. COPA’s main
contributions are (i) the easy-to-use and simplified container
orchestration environment, (ii) built-in orchestration algo-
rithms platform enabling the deployment of heterogeneous
types of algorithms, (iii) easy monitoring data gathering
for experiment evaluation, and (iv) an architecture unifying
testbed experimentation to container orchestration.

COPA differs from other container orchestration solutions
such as Open Source MANO [16] and Open Network
Automation Platform (ONAP) [17] by bringing a special-
ized built-in experiment environment with resources and
network monitoring of the active hosts. Moreover, COPA
enables the experimenter to deploy the network topology
and interfacing with the container technologies to reallocate
the resources dynamically. COPA communicates to the layer

below-named Virtual Infrastructure Management (VIM),
where all the container actions can be deployed. As shown
in Figure 1, tools such as Kubernetes [18], LXD [19], and
Swarm [20] are part of the VIM layer and can provide
container management capabilities to the orchestration layer.
COPA also focuses on providing a flexible platform for
container orchestration, enabling users to deploy different
solutions, quickly. Moreover, COPA can use pre-configured
experiments in the testbed utilizing different containers
management technologies. COPA also offers graphical mon-
itoring of computer resources, and network quality through
a friendly Web interface. The experimental environment
monitoring feeds the container orchestration algorithms with
data and provides real-time environment status emulating a
real MEC scenario. Furthermore, COPA stores monitored
data for experiment result analysis, which can be exported.

Orchestration

VIM

Infrastructure

LXD Swarm Kubernetes

DockerLXC

Figure 1: COPA in testbed orchestration layer

The remaining of this article is organized as follows. In
Section II, we present the background regarding experimen-
tal research and related work focusing on experimenter-
level tools and management technologies for containers. The
design and components of COPA architecture are explained
in Section III. In Section IV, we present a case study
where COPA can use its capabilities to provide an easy-
to-use experiment environment for MEC orchestration. We
evaluate the COPA performance in Section V. Finally, we
conclude and present future work in Section VI.

II. BACKGROUND AND RELATED WORK
In this section, we show the state-of-the-art about experi-
mental environments considering virtualization and orches-
tration as tools used to help the experimenters. We first give
a brief introduction to testbeds and virtualization technolo-
gies. Afterward, we present research about different types of
experimenter-level tools, which help experimenters achieve
experimental results in computer networks. Furthermore, we
list the most recent container virtualization technologies.
Finally, we demonstrate how these two topics could be
unified in one solution so that experimenters can benefit
from container management solutions in the experimenter-
level orchestration layer.
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Application Monitoring Resource Discovery GUI Workflow
Weevil [4] X X
SPLAY [5] X X
NEPI [21] X X
Plush [22] X X X X
jFed [23] X X X

INSTOOLs [24] X X X X

Table 1: Experimenter-level Tools

A. TESTBED & VIRTUALIZATION

Experimental research is the bases of new high demand
technologies. Researchers utilize experimental study to im-
prove and prove their premises or solutions within state-
of-the-art technologies. However, many times, researchers
do not have the required equipment or software to enable
their research. Some institutions created experimental envi-
ronments to support investigations, which can be remotely
accessed and are called testbeds. These environments are
essential for science, making experimentation accessible to
the majority of the research community. They help computer
science researchers in providing the necessary infrastructure
to evaluate its ideas and theories. Usually, these testbeds are
built driven by the demands of new emerging technologies
and the market. Therefore, different computer experimental
environments are mostly specialized in distinct areas, such
as programmable networks [25], optical/wireless infrastruc-
ture [26], or remote computing architectures [27], [28].
After provisioning the testbed infrastructure, the testbed’s
owners may provide remote access to its resources. This
remote access can vary between the direct access to the
experimental resource or through an abstraction layer called
Experimenter-level Management. This layer helps the exper-
imenter to understand the topology of its experiment and
quickly deploy the necessary resources.

The use of testbeds for remote processing experimenta-
tion, as Cloud-oriented applications, is of broad and current
interest. CC is a paradigm that enables services over the
Internet. Likewise, it may refer to the hardware and systems
in the datacenters that provide Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), Software as a Service
(SaaS), and even a new type of service called Internet of
Things as a Service (IoTaaS) [29]. The general purpose of
these services is to offer external capabilities of enhance the
processing, storage, and compatibility to remote devices and
services. In the case of IoTaaS, a set of Internet of Things
(IoT) devices operate interconnected with a distributed cloud
infrastructure, platform, or software [29]. These resources as
a service are currently one of the key concepts in the litera-
ture that is pushing forward the virtualization technologies.

Virtualization is one crucial technology that has been
widely explored in CC data centers to enable hardware
sharing with data and process isolation. Currently, the most
popular technology utilized for virtualization is VM [29].
However, recently an alternative for VM, the containers base
virtualization, is gaining momentum. The container allows a
lightweight in the deployment of services and applications,

compared to traditional VMs, due to the sharing of the host
kernel with user-space isolation. Containers are the base for
the deployment of emerging 5G technologies, as proposed
in the Cloud-Radio Access Network (C-RAN) [30], and to
deploy Network Function Virtualization (NFV) [31]. How-
ever, several container-supported architectures have been
developed in recent years. Each architecture is composed of
different standards and functionality, which makes one way
more challenging to deploy and to evaluate such services in
experimental testbeds. To identify successful applicants for
experimentation and to better understand the topic, we look
at the leading initiatives in the area concerning control tools
for testbed experimentation and manipulating applications
for containers.

B. EXPERIMENTER-LEVEL MANAGEMENT
Experimenter-level management is an abstraction layer that
provides generic and specialized solutions to facilitate the
setup, execution, and monitoring of experimentation. Fur-
thermore, it facilitates the development of innovative ap-
plications up to the monitoring and automation of testing,
decreasing the error rate of configuring, and deploying
an experiment. Besides such importance for experimental
research, the existing experimenter-level tools do not con-
template the necessary features for the current study areas.
To provide a better understanding of this subject of study,
we researched some experimenter-level management tools
from the last ten years. These researches are summarized in
Table 1.

Weevil is a model-driven framework for experimentation
on distributed-systems [4]. It provides a tool to describe
an application, simulates its workload, and enables repeata-
bility of the testing for the experimenter. However, it is
focused on the application-level and does not provide any
Graphical User Interface (GUI) or monitoring experimental
environment infrastructure and resources. SPLAY is an
integrated system that facilitates the design, deployment, and
testing of large-scale distributed applications [5]. This tool
monitors the whole system, orchestrates the deployment,
and provides an environment for easy distributed-system
prototyping. Furthermore, it gives a churn manager, which
can reproduce the real or synthetic behavior of distributed
systems from a file. However, SPLAY monitoring only
provides a logging feature for the distributed application,
and SPLAY also does not contain any graphical support
during the experimentation.

NEPI is a library for emulation and simulation envi-
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Application Service Discovery API Autoscaler Load Balancer Scheduler Live Migration
Docker [32] X

Kubernetes [18] X X X X X
Swarm [20] X X X
LXD [19] X X X
rkt [33] X X X X X

Table 2: Container Management Solutions

ronment integration that enables experimentation workflow
across various testbeds and network simulation tools such as
NS3 [21]. It provides tools for network and application-level
description, full experiment management, and trace result
collecting. Furthermore, NEPI offers an API for a third-party
GUI or script. Although it cannot provides metrics during
experimentation statistics, neither provides a resource dis-
covery for automatically finding testbed resources. Different
from the previous studies, Plush is a configurable application
management infrastructure that allows developers to define
flows of control needed by their computations [22]. This tool
introduces essential characteristics to an experimenter-level
environment such as distributed application fault tolerance
and liveness improvements utilizing relaxed synchronization
primitives. Plush provides a command-line, a GUI, and also
provides resource discovery for dynamic application de-
ployment. However, as other experimenter-level tools, Plush
focuses on monitoring, deploying, and managing distributed
applications in experimental environments, and does not
provide an experimental environment resource monitoring.

jFed is an experimentation tool which provides a friendly
GUI for testbed management, testing, and experiment au-
tomation [23]. This tool provides a list of federated testbeds
in its system, enabling the experimenter to reserve, deploy,
and connect to the testbed resources. For advanced users,
jFed provides components for those who want to perform
extensive fully-automated tests of the testbed APIs. One of
the significant differences of jFed is it does not offer features
from the control framework layer as other experimenter-
level tools cited before. All the functions presented must be
implemented in the testbed’s control framework, provided
to external usage by a standard API, and federated to jFed.

Finally, INSTOOLs, an Instrumentation System for Fed-
erated and Virtualized Network Testbeds [24], focus on
instrumentation and measurement infrastructure for the ex-
periment monitoring. Tsai et al. [31] classify network and
resource monitoring as part of the control layer of the
testbed. However, INSTOOLs implements a measurement
plane instantiating Measurement Controllers and Measure-
ment Points inside the testbed infrastructure to provide
environmental information to the experimenter. INSTOOLs
presents the experiment data utilizing tables and charts from
a Web Interface with the measurement plane. Besides giving
a meaningful network and resource monitoring architecture,
INSTOOLs lacks on providing experiment replicability and
workflow management.

The tools presented in Table 1 answer specific demands
on experiment-level management, and some of these tools

can even complement each other. However, there are inno-
vative technologies currently being study, such as MEC and
NFV, which require the orchestration of the experimental
virtualized resources, including features such as migration,
load balance, and autoscaling. Therefore, COPA aims to
supply the missing features by integrating containers man-
agement solutions into the experimental environment. To
provide a broad understanding of the existing solutions for
container management, we give research about the subject
in Section II-C.

C. CONTAINER MANAGEMENT SOLUTIONS
Container management solutions provide a lightweight vir-
tualization environment to deploy virtualized resources. Fur-
thermore, containerization can be attached to experimenter-
level management, enabling experimenters to implement
their off-the-shelf applications. The benefits of using con-
tainers in experiment environments are diverse. In this case,
we detail some of these virtualization technologies and
relate them to experiment environments. The containers
technologies are summarized and compared in Table 2.

Containerization is not a new technology anymore, e.g.,
Docker popularized it in its founding in 2013 [32]. Since
then, Docker took the high part of the market share,
turning into the most utilized containerization technology
[34]. Single application containerization has been the focus
of Docker, providing encapsulate microservices that can
communicate with each other through well-defined commu-
nication channels. Docker is a simple virtualization tech-
nology yet powerful, providing an external API for remote
container management besides the containerization itself.
Another innovative technology is Kubernetes, i.e., a cluster
manager for Docker containers [18]. This cluster manager
is a technology built on top of Docker technology, intro-
ducing new functionalities such as container auto-scaling,
load balancing, and scheduling, enabling the utilization of
containerization inside CC data centers. Kubernetes also
allowed the service discovery of other new Kubernetes
clients in the network. Moreover, this solution provides the
configuration of multiple resources from a single point, and
it is one of the most promising software for container cluster
management.

A more straightforward cluster manager for Docker con-
tainer than Kubernetes is Docker Swarm [20]. Different
from Kubernetes, which was developed by Google, Swarm
was developed by Docker Inc. itself. Therefore, the inte-
gration of this cluster manager with the lower container-
ization layers is smoother than the former. Swarm has
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many similarities with Kubernetes, such as load balance,
service discovery, and scheduling modules. However, it is
more limited, having lesser options for configuration than
Google’s solution. Moreover, Swarm does not comprise the
auto-scaling module, responsible for providing high stability
to the containerized application. Besides its drawbacks,
Swarm is an excellent option for simple cluster management
and could fit perfectly in an experimental environment.

LXD is an abstraction layer for Linux Containers Li-
braries and Tools (LXC) [19]. LXC is a straightforward
container technology, not providing an API for external
management. LXD was implemented on top of LXC to
improve Linux containers’ experience by enabling remote
access through an external API. Different from Docker,
LXD treats containers not as microservices, but as a multi-
application environment such as VMs. To improve its usage
in datacenters, LXD has integration support with OpenStack,
i.e., a cloud infrastructure manager [35]. This integration
enables OpenStack to deploy containers instead of physical
servers or VMs. Furthermore, the differential feature for
LXD is its live-migration tool, which empowers the exper-
imentation of several types of containerized services.

Core OS also developed a container technology called rkt,
i.e., an application container engine such as Docker. In this
case, each container only runs one application, not an entire
operating system [33]. The significant advancement of rkt is
security. While Docker always has a root privileged daemon
which enabled all its features, it can run its containers as
unprivileged ones avoiding security breaches. Therefore, an
experimental environment that is very security concerned
may use rkt as its container virtualization technology.

Based on the crescent utilization of containers, the devel-
opment of frameworks and layers on top of containers is
becoming usual. These frameworks use the containerization
characteristics to enable business and research of new kinds
of remote computing models such as Function as a Service
(FaaS) [36]. One of the tools that deserve mentioning is
the OpenFaaS framework [37]. This framework is based on
Docker and uses Kubernetes or Swarm as cluster managers
to make available its stateless functions over the Internet.
Apache OpenWhisk is a framework similar to OpenFaaS
[38]. It enables FaaS to utilize container technologies to
push the state-of-the-art of remote computing business
models. As shown, there are currently new paradigms and
technologies created with the emerging of containers such as
FaaS and OpenWhisk. Another example of how containers
are a trend in virtualization research is the EdgeNET project,
which was created aiming to create a Kubernetes-based
software-only infrastructure for CC and MEC experimenta-
tion [39]. The project provides access to several Kubernetes
nodes worldwide and enables the creation and integration of
a local Kubernetes node to the EdgeNet cluster. The project
can provide at least one node (the experimenter node) close
to the network edge, enabling the experimenter to add its
node in the project cluster. This scenario characterizes a
MEC experimentation because the experimenter’s node will

be closer to the devices connected in your network. In this
way, the experimenter can test remote computing capabili-
ties with lower network latency and higher bandwidth than
the other EdgeNet cluster’s nodes.

Containerization brings a whole new world not only
for the industry but also for academia. However, most
of the experiment-level management tools do not have
support for container virtualization. Container virtualization
technologies seem to take a straight road to service high-
availability. However, these technologies lack features that
could help with experimentation, such as container live-
migration, workflow management, and customizable con-
tainer orchestration. COPA integrates the experiment-level
management and containerization, extending the ability of
orchestration from the experimental environment’s infras-
tructure. This integration enables experimenters to run their
containers in several configuration patterns and research the
application behavior in different conditions through a user-
friendly graphical interface. In the next section, we detail
how we enhanced the experimentation with containers.

III. EXPERIMENTER-LEVEL CONTAINER
ORCHESTRATION FOR TESTBEDS
In this section, we present the COPA’s architecture for
experimenter-level container orchestration for testbeds. We
explain the theoretical references for the layer organization
of the architecture and introduce it to the main COPA’s
components. In the sequence, we detail the fundamental
feature of COPA, Orchestration System, which enables the
containers orchestration experiments.

A. LAYER ORGANIZATION
One way to organize a system architecture is through
layers to group up components that perform a similar role.
However, depending on the objective, we can divide the
same components differently. In this section, we present a
layer organization based on experimental environments, on
MEC, and the equivalent layers in COPA architecture. In
Figure 2, we map these equivalencies.

Orchestration

VIM

Software
Application

Control
Framework

Hardware
Infrastructure

Resources
(Container Pool & Generic Resources)

Central Node

Graphical Interface

COPA MEC's viewTsai's View

Infrastructure

Figure 2: COPA layers classification

Tsai et al. [31] wrote an excellent survey about the control
framework for computer networks testbeds. Moreover, the
authors classified the different types of testbeds, and they
came up with a layer structure for experimental environ-
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ments. Tsai argues that this environment should be com-
posed of three essential layers. The first layer from top-down
is Software Application layer, where are all the tools and
graphical interfaces to help the experimenter to develop its
research. The second layer is the Control Framework layer,
which is responsible for enabling Resource Management,
User Management, Monitoring, besides the communication
with the Software Application layer and the layer below. The
third and last layer is the Hardware Infrastructure layer,
which includes all the experimental physical resources.

In MEC environments, the layer organization differs from
experimental settings because it focuses on orchestrating
services and VNFs hosted in its data centers [3]. MEC’s first
layer, from top-down, is the Orchestration layer. This layer is
responsible for choosing where to place or migrate a service
based on the current status of the resources and the service’s
requirements. VIM is the second layer accountable for man-
aging the life cycle of the virtualization technologies, e.g.,
VMs, and containers. It receives management orders from
the Orchestration layer, such as deploying and migrating
virtual resources. Furthermore, some VIMs technologies can
take over the replication of service, in case of an overload,
and respawning it, in case of an error. The last layer is
reserved for the infrastructure, representing every physical
resource available in a data center and can be managed by
the VIM layer.

To provide MEC capabilities in an experimental environ-
ment, COPA mix both layer structures into three layers:
(i) Graphical Interface, (ii) Central Node, and (iii) Re-
sources, as shown in Figure 2. COPA’s Graphical Interface
is equivalent to both Tsai’s Software Application layer by
providing tools for experimentation to the user, such as
monitoring charts and experiment visualization. Moreover,
Graphical Interface includes part of the MEC’s orchestration
layer into it by providing orchestration configuration and
the deployment of algorithms. As Graphical Interface only
provides the front-end for the orchestration layer, the Central
Node provides the back-end.

The Central Node layer is responsible for executing the
orchestration algorithms and providing access to the testbed
resources. It is worth to mention that we chose not to
rely on any specific VNF description language on COPA.
This decision was made to keep the virtualization of the
network functions deployment at a container management
level. Container technology is currently widespread and this
approach can facilitate the understanding of the tool’s usage.
LXD, the container virtualization used in COPA prototype,
relies on profiles1 to configure resource usage restrictions
and security settings for instance. However, for container
deployment, LXD relies on previous configured images
that it download from image repositories. Furthermore, the
Central Node includes experiment support for orchestration
features such as experiment automation, monitoring, and
data storage. These experiment support features are what

1https://lxd.readthedocs.io/en/latest/profiles/

Tsai’s Control Framework layer is responsible for as well.
The Control Framework layer executes the experiment tools
in the testbed-side. Moreover, unlike COPA’s Central Node
layer, the control framework layer also manages the testbed
infrastructure and reserves the necessary resources to run
the experiment.

Resources are the last COPA layer. It represents all the
hardware and virtual infrastructure available in the testbed
and some monitoring and experiment automation agents.
Therefore, this layer is equivalent to some part of Tsai’s
Control Framework and some of Hardware Infrastructure.
From the MEC perspective, COPA’s Resources layer has
the same role as VIM and Infrastructure layer by being
responsible for hosting virtualized resources. The Resources
layer can be classified into two different types. The first
type is Container Pool, i.e., a resource capable of running
containers, and the second type is Generic Resources that
cannot run containers.

Considering the organization of these layers, we aim to
provide an experimental MEC environment by providing
orchestration configuration with experiment support tools
to the experimenter. To better comprehend of the COPA
operating, we describe the components within the COPA’s
layers in Subsection III-B.

B. COMPONENTS
In this subsection, we detail all the components which
compose the three-layered COPA’s architecture. The com-
ponents are described from top-down following the order
from Figure 3 (A). Orchestration Management, Workflow
Management, Monitor, and Data Exportation components
(1-4) composes the Graphical Interface layer enabling the
user interaction with COPA through the browser. The
Central Node’s layer counts with Orchestrator, Workflow
Controller, Monitor Controller, Data Processor, Software-
Defined Networking (SDN) Controller, and Resource Dis-
covery components (5-10). Finally, in Resources, there are
Containerized Apps, Monitoring Agent, Workflow Deployer,
and Virtual SDN Switch (11-14).

1) Orchestration Management
It is a graphical interface that provides all the function-
alities to the experimenter to manage its orchestration
algorithms. This component contains management options
such as executing, stopping, and removing algorithms of
the Orchestrator from the Central Node. Besides the stan-
dard management options, the Orchestration Management
interface counts with the switch functionality. The switch
is necessary because the experimenter can run multiple
orchestration algorithms simultaneously. While using the
switch, the module tells the Central Node to turn off the
running algorithms and start the selected one. Furthermore,
the experimenter can upload container images using Orches-
tration Management, which will send the information to the
Orchestrator component, and will communicate to the VIM
to deploy the container. The Orchestration Management
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aggregates value to COPA by providing simplified access
to built-in orchestration functionalities. Therefore, it enables
the adjusted deployment of heterogeneous orchestration
solutions.

2) Workflow Management
This component is an interface that provides custom auto-
maticity planning to the experimentation. The experimenter
can pre-program a set of commands and time intervals. A
scenario can be executed using this component, runs for a
specific time, stops the current experimentation, reconfig-
ures the new scenario automatically, and runs in another
time interval. In this way, this component can accelerate
the experimentation research by reducing the configuration
time and providing reproducibility for the experiment. Re-
producibility is an essential characteristic for a research
analysis since, when evaluating a scenario, researchers need
to run the same setup several times, trying to decrease error
margins.

3) Monitor
This component provides several metrics charts with data
collected by Monitoring Agents, enabling the user’s ex-
periment awareness. Following real-time monitoring, the
experimenter can detect errors, anomalies, and undesired
circumstances. This component is divided into two parts to
provide the above characteristics: (i) the dashboard, where
the experimenter follows the data gathered from Container
Pools and Generic Resources such as CPU, Virtual Memory,
Storage, etc.; (ii) detailed monitoring of Container Pools
and Generic Resource, which presents data from containers
and network link connectivity among all resources. The
objective is to give the metrics available in COPA and
its behavior during the experiment to the experimenter.
Therefore, the experimenter can design and enhance the

orchestration algorithm based on the network’s response and
the resources during the current orchestration.

4) Data Exportation
It provides an interface to the experimenter with the data
stored in the experimental environment. When choosing
data exportation methods, the experimenter can select data
format, from which resources it needs the information, and
which metrics it wants to export. Moreover, this component
enables the user to download the experiment workflow
and orchestration configuration, allowing the experiment’s
reproducibility. Furthermore, the exported configuration data
can be used as a tool for hands-on lab classes to facilitate
the investigation setup by the students.

5) Orchestrator
It allows the experimentation of custom orchestration al-
gorithms by the experimenter. Orchestrator provides an
environment to run one or multiples processes to support
experimenter orchestration algorithms. In this way, COPA
enables the simultaneous execution of intelligence to man-
age containers or migrate them to new Container Pools.
Orchestrator, as can be seen in Figure 3 (B), is composed
of five subcomponents: (i) Algorithms Library, (ii) Orches-
tration Controller, (iii) Sandbox Environment, (iv) Con-
tainer Manager Communication Library, and (v) Database
Communication Library. Algorithm Library stores default
orchestration algorithms and custom algorithms uploaded
by the experimenter. Orchestration Controller monitors the
experiment configuration in the database and manages the
life cycle of the orchestration algorithms by downloading
the algorithms from Algorithms Library to its execution
in Sandbox Environment. Sandbox Environment is a re-
stricted runtime environment for orchestration algorithms
deployment, which avoids malicious scripts to reach critical
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components of the testbed. Container Manager Commu-
nication Library and SDN Northbound interface enable
communication from inside of Sandbox Environment to out-
side resources. The former communicates to the container
management services located in the Container Pools. The
latter allows interaction with the SDN controller, so that the
algorithm can manage the data flow among the containers.
Finally, Database Communication Library provides read-
only access to the experimental data for decision-making of
the custom orchestration algorithms. Furthermore, Orches-
tration Controller can also manage eventually by Workflow
Controller to deploy pre-configured management actions to
the orchestration algorithms. The Orchestrator brings a cen-
tralized component prepared for deployment of orchestration
algorithms. Its usage is simplified through the Orchestration
Management interface. The abstraction of heterogeneous
interfaces for Container Management solutions, SDN Con-
trollers, and access to data storage helps the deployment
of a single script in infrastructures built on top of different
solutions. This characteristic facilitates the standardization
of the scenarios created by students in several networking
testbeds worldwide.

6) Workflow Controller
This controller is the central component of the workflow
functionality. It receives the description of the automation
process from the Workflow Management and breaks it into
small sorted actions, and builds a control unit class. This
class maps all the tools and resources necessary to run the
experimentation from its beginning till its end. In this map-
ping are described Workflow Deployers, the orchestration
algorithms, the communication actions with Orchestrator,
the time intervals, and the routine scripts uploaded by the
user to be run. Moreover, Workflow Controller can change
the active orchestration script, pause, or run simultaneous
scripts. Furthermore, this component can upload scripts to
Workflow Deployers and make then run a set of actions
inside the experimental resources. These actions can also
be succeeded by time intervals, which controls the time
for which iteration and parameters change. In summary, the
Workflow Controller parses the experiment execution file,
maps it to the testbed environment, and dictates the actions
that will happen during the experimentation. Therefore, the
experimenter applies test automation, which decreases the
human error factor when reproducing an experiment several
times.

7) Monitor Controller
It is the centralized control of the monitoring function-
ality to manage multiple Monitoring Agents. Moreover,
this component organizes network and resource monitoring,
synchronizes the startup of Monitoring Agents, and avoids
unnecessary CPU and network utilization at the beginning
of the experiment. The connection created between Monitor
Controller and Monitoring Agent its strictly for monitor-
ing control, hence Monitor Controller is not responsible

for storing the monitoring data collected by Agents. This
component adds up to the value of COPA in general because
it ensures the management of Monitoring Agents’ life-cycle.
The data collected by the Monitoring Agents are essential
for the decision-making algorithms, which becomes funda-
mental that we have a component ensuring the execution of
the monitoring task.

8) Data Processor
This component is responsible for processing the requests
from Data Exportation and the Monitor components. It is
common in any client-server architecture to have a compo-
nent to receive and process the information requested from
the front-end applications, such as the Graphical Interface
layer. Moreover, when required, Data Processor queries
the COPA’s database and the data standard format to be
shown in the Graphical Interface layer. Furthermore, this
component can be used by third-party software to extract
data from the experiment providing an API for Graphical
Interfaces components. Data Processor is not an innovative
component. However, it is a must-have to provide the
necessary features for COPA to be up-to-date to the concepts
of service-based architectures. Therefore, this component’s
inclusion is essential and helps in the communication of
COPA with other testbed infrastructure software.

9) SDN Controller
This controller centralizes the SDN rules deployment by
detaching the network control plane from the data plane.
Algorithms deployed by the Orchestrator can have access
to this component using the Northbound Interface, which
every SDN controller holds for external access. The SDN
controller receives the commands from the Northbound
interface and deploys them to the respective SDN switches,
customizing the network traffic. SDN is fundamental if the
experimenter needs to deploy a sequence of VNFs, called
Service Function Chaining (SFC). This sequential VNFs
needs to have the network traffic steered through them, and
the SDN controller can configure the necessary network
rules to make it possible.

10) Resource Discovery
It provides automatic discovery of the experiment environ-
ment resources. Resource discovery facilitates the experi-
ment setup since the experimenter does not need to register
all the resources manually. This characteristic is beneficial
in scenarios not controlled by the experimenter, and it does
not have direct access to the resources. This component’s
main action is at the beginning of the experimentation,
broadcasting a message to the network, and locating the
experimentation resources that are listening to the network.
As soon as Resource Discovery founds a resource, it reg-
isters in the storage and sends the control of the resource
to the Controlling components such as Monitor Controller,
Orchestrator, and Workflow Controller. Resource Discovery
can also be executed through Graphical Interface, so the
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experimenter can add new resources after the experiment
started. Although the apparent automation brought by the
Resource Discovery, this component gets the right infor-
mation of the Generic Resources and Container Pool for
centralized management, such as Orchestrator and Workflow
Management, which depends directly on the infrastructure
information.

11) Containerized Apps
This component is an abstraction for the container man-
agement role. Moreover, it can be any containerization
technology, only needing to have an external API for remote
management. For some container management characteris-
tics that COPA supports, such as container live-migration,
the Containerized Apps may have it implemented so COPA
can make it available to the experimenter. The Containerized
Apps component is the main block in the testbed’s virtual-
ization and resource isolation and experimentation. Based on
this component, the MEC application servers, and network
function stands and will be managed and orchestrated by
the COPA components.

12) Monitoring Agent
This agent composes, beside Monitor Controller and Mon-
itor, the monitoring system of COPA. It is responsible
for collecting end-to-end network metrics among the Re-
sources and monitoring computational resources such as
CPU, Memory, and Network Workload. This component
collects data from connected devices, such as Packet Loss,
Signal Strength, and Transmitted and Received bytes, con-
sidering any resources which have a wireless communica-
tion interface with an access point. The reliability of the
Monitoring Agent data is essential for the research results
and conclusions. Therefore, extra care should be taken in
the tools used for the network and resource monitoring.

13) Workflow Deployer
It is a passive module that listens to the Workflow Controller
component for commands to execute. It can be configured
and installed in any resource, and besides running com-
mands, it can download full scripts from the Controller and
report execution time errors. The support of script download
enables the execution of complex routines provided by
the experimenters. Furthermore, the execution time report
allows experiment environment awareness for the user and
helps to debug the experiment routines. Therefore, it is a
must-have component to the Workflow functionality works
in a centralized way by supporting the actions deployed in
Workflow Controller.

14) Virtual SDN Switch
This component enables the redirection and customizes
treatment for the network traffic passing by it. Moreover,
it communicates with the SDN controller through the
Southbound interface to receive SDN Rules and, in some
cases, to send monitoring data about the network traffic. In

every experiment deployment, the experimenter performs
a sequence of actions to run the scenarios, and we call
the experiment flow. In our architecture, the experiment
flow advances by three main components: Orchestration
Management, Orchestrator, and Containerized Apps, which
are highlighted in yellow in Figure 3 (A) and (B). The
remaining experiment support components support these
components, and, in Subsection III-C, we describe their
functioning and the communication among them.

C. ORCHESTRATION SYSTEM
In COPA, the experiment flow begins at Graphical Interface
after the resources are deployed and already found by
the Central Node’s Resource Discovery component. After
the resources registered, the experimenter can visualize
through Monitor the existing Container Pools and Generic
Resources. The first action of the experimenter is to create
or upload its containers to one or more Container Pools
through Orchestration Management. Next, the user writes
the algorithm in a standard programming language defined
in the COPA implementation. Orchestration Management
provides file upload to save one or multiple orchestration
algorithms. The component, then, communicates with Or-
chestrator to send the orchestration algorithm and check the
status.

A copy of the algorithm is stored at Algorithms Li-
brary when Orchestration Management communicates to
Orchestrator sending this algorithm. The experimenter can
send management actions, e.g., start/stop the container, from
Orchestration Management to Orchestrator to manage one
or multiple algorithms. Moreover, COPA saves the current
orchestration configuration in the storage. Orchestrator reads
the change of configuration status and applies to the or-
chestration subcomponents by downloading the algorithm
from the Algorithm’s Library to Sandbox Environment and
deploying it.

After being deployed, the orchestration algorithm starts
reading the monitoring data from the database and making
decisions over the containers. These decisions are made
through the Container Manager Communication Library,
which delivers the message to the container management
technology. Therefore, the container management technol-
ogy is responsible for doing the changes into Container-
ized Apps inside Container Pools. We provide a ready-to-
use, MEC orchestration environment for experimentation.
Orchestration System enables the research of trending ar-
eas that require secure virtualization and orchestration of
services, concluding the integration of experimenter-level
management and container management technologies.

IV. CASE STUDY
This section presents a case study describing how COPA
helps the experimenters lead with container orchestration
tests. For this case study, we consider a real MEC envi-
ronment that consists of a small-sized datacenter providing
services at the edge of the network and a robust and large-
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Figure 4: Case study representation

size datacenter specializing in energy efficiency and and
large-scale services in CC. Figure 4 (a) shows the scenario
with two MECs and a CC. In this case study scenario,
two VNFs are deployed in the MEC datacenter at first,
and the Network Orchestrator continuously monitors it. This
orchestrator’s objective is to avoid Quality of Service (QoS)
degradation. One of the solutions to prevent this degradation
is the orchestrator triggering a migration of one of the VNFs
to another MEC or the CC datacenter based on the network’s
current status and available resources.

COPA supports this scenario emulation by deploying six
VMs: one CC datacenter, two MECs datacenters, one for the
Orchestrator, one to emulate a client, and one to emulate the
server, as can be seen in Figure 4 (b) and (c). VMs for the
CC datacenter and the two MECs are deployed as Container
Pools with distinct capabilities to emulate the difference
in processing power between the edge and core network
facilities. The Orchestrator VM is deployed with the Central
Node and Graphical Interface for the experiment’s network
orchestrator. Furthermore, two other generic VMs are de-
ployed to emulate a client-server architecture, establishing
a connection, and generating data traffic. Figure 4 (b) depicts
the physical connectivity among the resources deployed in
the testbed. In this illustration, we detail our case study’s
application data flow, a virtual Firewall (vFirewall) and
an Intrusion Detection System (IDS) are used in MEC1
processing the traffic passing through it.

Figure 4 (c) highlights the existent control channels
among the deployed resources to be orchestrated. Each
Container Pool, MEC or CC, monitor its available resources
such as storage, memory, and CPU usage. Furthermore,
the datacenters are responsible for monitoring the network
latency and jitter to the other datacenters in the network
and the current download and upload network throughput.
Considering the data from the monitoring collected, the

Container Pool sends this data to the Central Node, where
the decision migration is taken.

Over this scenario, the experimenter tests two different
types of container orchestration algorithms. These algo-
rithms orchestrate the two different types of VNF: vFirewall
and IDS. In this work, we did not aim to provide an evalu-
ation of algorithms effectiveness because there are already
other studies that pursue this objective [40]. Therefore, for
this purpose, we chose two simple threshold algorithms to
describe the functioning of COPA.

The first algorithm, which we call Algorithm A, receives
the CPU utilization percentage of the host. In case the CPU
percentage goes up 90%, the migration is initiated to a host
with the CPU availability under this percentage. The value
of 90% was chosen, assuming that both VNFs which will
be presented will consume at least 10% of CPU capacity.
The second threshold algorithm, which we call Algorithm
B, considers the network latency between the hosts and the
cost to host the service. If the MEC latency, which is nearer
to the users and any other host with lower hosting cost,
reaches the latency below 20ms, the migration is triggered
by the MEC nearer to the users. Algorithm B assumes which
the addition of 20ms in the network latency for this specific
service will not interfere in the users’ Quality of Experience
(QoE).

In this case study, the experimenter manages the scenario
connecting to COPA via Graphical Interface to the Central
Node. Through Graphical Interface, it is possible to upload
the VNFs containers into one of Container Pools, and, then,
the experimenter have the possibility to follow the mon-
itoring of the Container Pools. Moreover, COPA presents
the list of the containers running in each of the Container
Pools, where containers management actions such as start,
stop, and migrate are available. Following the VNFs setup,
the experimenter uploads the orchestration script into COPA,
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(e.g., deploying Algorithm A). This operation is performed
through Orchestration Management, where the experimenter
is also able to manage the available orchestration scripts.
Furthermore, after the orchestration script uploaded and
deployed, the experimenter checks the behavior of Container
Pools using Monitor, and also if there is any container
migrating occurring by analyzing the network data traffic.
In Figure 5, we detail the sequence diagram of the com-
munication among the COPA layers for (i) the creation
of a container, (ii) the upload of only one orchestration
algorithm, (iii) the deployment of this algorithm, (iv) the
orchestration algorithm being fed by COPA with resource
monitoring data, and, finally, (v) a migration being executed
by the Algorithm A.

Container 
Pool
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Secondary 
Container
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LXDCOPACOPA LXD LXD

createContainer
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requestContainer
Image

sendContainerImage
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Algorithm
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Figure 5: COPA layers sequence diagram for container creation, upload of
an algorithm, execution of an algorithm, and migration of a container

There are two possibilities to add algorithms to COPA:
Manual or automatically. When deploying manually, the
experimenter access the graphical interface and send the
algorithm script through COPA API. However, the actions of
deployment of a VNF or algorithm can be configured auto-
matically, using the Workflow functionality. The Workflow
components enable the experimenter to setup step-by-step
the scenario changes, even stopping complete the algorithms
and containers, and initiating a completely different one.
The automation of the experiment starts by uploading the
containers and the algorithms to COPA as usual. However,
the experimenter using the Workflow Management starts
creating a list of commands, such as deploy container, de-
ploy orchestration Algorithm A, and switch to orchestration
Algorithm B. These commands are preceded by the relative
time since the experimenter’s start and will be executed as
configured by the user.

In our case study automated experiment, we configure
two VNFs and two orchestration algorithms. Algorithm A
and both VNFs will be deployed in the second 0 and
stop at the second 59. After that, in the second 60, we
return containerized VNFs to its original Container Pools
in case they had been migrated. When the migration is

done, Algorithm B is started. In this way, we automatically
evaluate the same containerized VNFs start position for two
different orchestration algorithms.

Case studies such as this one can represent scenarios for
the research and introduction to orchestration algorithms
for educational purposes. COPA facilitates the setup of
such experiments keeping the hardware requirements for
the deployment of an orchestrator at the minimum possible.
For example, this minimum hardware setup for the VNF
orchestration study maximizes access for practical network
management courses. Therefore, COPA fills a gap in a
market where the orchestrators are built focusing on industry
and production rather than education.

V. EVALUATION
Most of the tools used when evaluating a scenario might
affect the experimental environment several manners, and
with COPA, it is not different. It is essential to understand
the behavior of these tools to prevent unexpected variations
in the experimental environment. To better understand this
section, we first present a high-level comparison between
COPA and other orchestration tools. Preaching for trans-
parency, we detail COPA resource consumption behavior
to provide a full understanding of what the users can
expect when utilizing this tool. Moreover, we describe our
experimental environment setup and results.

A. HIGH-LEVEL TOOLS COMPARISON
COPA was developed to be an experimenter-level orches-
trator. Given the academic focus, COPA differs in several
aspects from other orchestrators available in the market,
such as ONAP [17], Open Source MANO (OSM) [16],
Tacker [41], and Open Baton [42]. The usage of these
orchestrators varies in design and features, which attract
different collaborators to the projects. We briefly introduce
these four orchestrators, as can be seen in Table 3.

ONAP is an open-source software platform that provides
lifecycle management support for new services proving
orchestration of physical and virtual network functions. This
platform is the merging of two big projects in the same area.
One of these projects was lead by AT&T and the other by
the Linux Foundation in collaboration with China Mobile,
Huawei, and ZTE. Due to the integration of these projects,
a restrictive characteristic of ONAP is the high hardware
requirements.

OSM is a project led by the OSM Foundation and is
designed to align with ETSI NFV information models. This
alignment with the standards defined by ETSI implies that
every component and interface detailed in the documents
are implemented in the stack and should be compatible with
every stack that complies with the ETSI standard. However,
OSM does not focus on experimenter-level tools.

Tacker is a generic VNF manager and orchestrator main-
tained by Openstack. This orchestrator is designed to be
compatible with the OpenStack virtualization technologies.
Tacker is composed mainly of two components, which
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Orchestrator Hardware
Requirements

Orchestration
Capabilities

Virtualization
Technologies

Experimenter-level
tools

User Interface Network Monitoring

COPA Light Monitoring,
Live-migration

Container X X Active and passive
monitoring

ONAP [17] Heavy Monitoring,
Live-migration,

Lifecycle
Management,
inter-Domain

Virtual Machine &
Container

Partial Passive monitoring
for specific
technologies

OSM [16] Light Monitoring, Live-
migration,Lifecycle

Management

Virtual Machine X Only passive
monitoring

Tacker [41] Medium Monitoring,
Live-migration,

Lifecycle
Management

Virtual Machine &
Container

Only passive
monitoring

OpenBaton [42] Light Monitoring,
Live-migration,

Lifecycle
Management

Virtual Machine &
Container

X Custom monitoring

Table 3: Orchestration tools comparison

exposes orchestration actions through an API and communi-
cates with the infrastructure driver. This tool works perfectly
for who is already proficient in OpenStack for managing
cloud servers and upgrading it to use with VNFs.

OpenBaton is another alternative for ETSI compliant
orchestrators. This orchestrator is developed by Fraunhofer
FOKUS and TU Berlin and is one of the parts of the project
5G Berlin2. OpenBaton aims to provide NFV management
for cloud servers to support research projects and lead the
state-of-the-art.

All the orchestrators aforementioned are designed to
expose API and manage the lifecycle of virtualized compo-
nents such as VNFs. Therefore, these orchestrators connect
to VIMs such as OpenStack, Docker, and Kubernetes, re-
sponsible for managing any virtualized infrastructure. How-
ever, to specialize the orchestration of virtual components,
orchestrators such as COPA are fundamental to complement
the management intelligence and support specialized config-
uration and actions to achieve different services/experiment
objectives. Aiming to highlight the pros and cons for each
orchestrator project and compare them with COPA, as can
be seen in Table 3, we selected six different characteristics:
hardware requirements, orchestration capabilities, supported
virtualization techniques, the support for experimenter-level
tools, the availability of a user interface, and network
monitoring.

In the hardware requirements, we classified the orchestra-
tors in three types: heavy, medium, and light. In the heavy
hardware requirements type, ONAP is the only orchestrator
composing this group. ONAP, in its minimum setup, re-
quires 40GB of RAM, 1TB of storage space, and, at least,
25 vCPUs. In the medium type, Tacker is the only group
member requiring 8GB of RAM and must be installed with
OpenStack. Given the strong attachment with OpenStack
as VIM, Tacker was classified in this group. In our most
prominent group, the light hardware requirements, we have

2https://5g-berlin.de/

COPA, OSM, and OpenBaton. OSM requirements are 2
CPUs, 4GB RAM, 20GB disk. OpenBaton requirements
are 2 CPUs, 2GB RAM, and 10GB of the disk, COPA
minimal hardware requirements are 1 CPU, 1GB RAM,
and 10GB of the disk space. These three orchestrators’
hardware requirements do not have a massive difference
and can be classified in the same type. COPA, OSM, and
OpenBaton are the best candidates for simple deployments
of orchestration tools while ONAP and Tacker are suitable
for large and medium network infrastructures, respectively.
Furthermore, a benchmark study for orchestrators was done
by Yilma et al. [43]. In this study, they compared a setup
with ONAP and other with OSM supporting the theory that
the former is better designed for high computing power
infrastructure. The latter is better for the orchestration of
small size infrastructures such as MEC datacenters.

The orchestrators have small differences among capabili-
ties. Monitoring of the virtualized components is an essential
feature, and it is present in all of the orchestrators. However,
Live-migration capability depends on each VIM in which
the orchestrator is deployed. VIMs using VMs are mostly
supports live-migration. However, when using containers,
hardly the experimenter can use this feature with the or-
chestrators. COPA using LXD as a container virtualization
technique differs from other orchestrators that use Docker
and Kubernetes. Therefore, using LXD, COPA can support
live-migration for containers. In this context, Inter-Domain
is a feature of orchestrators that enable the communica-
tion synchronized among orchestrators. The only orches-
trator prepared for this communication is ONAP, which
is designed for large and industrial operations. The fourth
and last orchestration capability is Lifecycle Management,
which is an essential feature for orchestrators. In this case,
only COPA lead to this challenge in a different methodology.
However, COPA does not implement this feature, exposes
all the necessary APIs for the implementation. COPA grants
primitives for the experimenter to build its solution on top
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of the orchestrator. This characteristic enables COPA to be
more flexible and straightforward.

The orchestrators support certain virtualization technolo-
gies: VM or containers. ONAP, OpenBaton, and Tacker sup-
port both technologies, making them great to heterogeneous
environments where you have both technologies. However,
OSM and COPA have specific focuses. OSM supports only
VM, which is a well-consolidated technology, and COPA
supports containers, which is a light-weight technology and
again focuses on simplicity and light deployment.

The experimenter-level tool is an essential characteristic
of orchestration tools for research objectives. The major-
ity of the orchestrators have capabilities to monitor and
collect data about their performance and execute actions
based on their resource utilization. Nevertheless, COPA is
designed to perform sequential experiment steps and activate
orchestration scripts with objective performance evaluation.
Therefore, it is composed of several graphical interface tools
and architectural modules to best experiment orchestration
strategies.

The user interface helps experimenters, such as students,
visualize the orchestrator’s resources and options to per-
form orchestration actions. Therefore, orchestrators such as
COPA, OSM, and OpenBaton offers the user a graphical
interface to organize and configure the virtual environment.
ONAP is an enormous system and decided to have different
graphical interfaces for various modules in its structure,
and other modules can be configured only by the command
line. As an extension of OpenStack, Tacker does not have
a graphical interface, only making available to the user a
command-line interface.

The network monitoring for orchestration is fundamental
for orchestration intelligence when evaluating the impact
of an orchestration decision upon an ongoing service.
Therefore, complete monitoring of the network needs to
be implemented, and additional network delays take into
consideration the orchestration decision-making. Tacker and
OSM have passive monitoring of the virtual resources,
making available the information about packets sent and
received and the network’s throughput and for each VNF.
ONAP, besides the passive monitoring of the resources, also
relies on specific protocols such as Voice Quality, which can
inform packet loss, packet delay variation, round-trip delay.
Therefore, using packets for this particular technology, it
can measure end-to-end network metrics. OpenBaton does
not have a complete monitoring system for its resources
but enables an external monitoring system such as Zabbix3.
The customization of the network monitoring helps flexi-
bilization of the system and opens new fronts to evaluate
the virtual environment and network. COPA offers the user
an active and passive network monitoring of the virtual
resources’ host. Therefore, it provides the necessary infor-
mation for the custom orchestration scripts to make the best
evaluation of the impact of the migration of the resources

3https://www.zabbix.com/

in the lifecycle management of the virtual environment and
service quality.

In this section, we listed the main options for virtual
network orchestrators. The possibilities present different
characteristics and focus where ONAP is a robust net-
work orchestrator and the primary choice for deployment
in industry. OSM is the second option for most of the
studies in network orchestration, and OpenBaton, which was
embraced by a big network project. Because of different
characteristics, these orchestrators could fill distinct niches,
and COPA is not different. COPA has its differences to the
other network orchestrators, fills a newly identified gap in
research, and enables simple deployments and evaluation of
orchestration scripts in universities and testbeds.

B. EXPERIMENTAL ENVIRONMENT SETUP
The evaluation scenario is composed of four VMs: one
running Central Node with Graphical Interface, and the
other three running Container Pools. The configuration of
VMs is detailed in Table 4, which are connected in the
same network. COPA’s version utilized in this evaluation
was developed for the control framework of the Federated
Union of Telecommunications Research Facilities for an
EU-Brazil Open Laboratory (FUTEBOL)4 project. In the
implementation, we used the programming language Python
3.7 mixed with Django Framework [44]. Furthermore, we
chose LXD [19] as the container management solution aim-
ing for the live-migration feature. All details, e.g., source-
code and tutorials about COPA implementation, can be
found at the FUTEBOL’s GitLab repository [45].

VMs Configuration
Description 1 Central Node and 3 Container

Pools
OS Version Ubuntu 18.04.2

Linux Kernel 4.15.0-46-generic
Architecture x86_64

LXD 3.0.3
CRIU 3.6

Memory 1 GB
CPU Cores 1

CPU Frequency 1.80 GHz,

Table 4: Experiment scenario VMs configuration

This experimental environment setup emulates a MEC
scenario with three data centers and a decoupled decision-
making unity, Central Node. Based on this setup, we aim
to evaluate the number of resources and network capacity
COPA requires.

C. QUALITATIVE RESULTS
It is common sense that hard-to-use tools may compromise
the new public’s adherence to a particular subject, in the
researchers’ community is not different. Easy-to-use tools
may attract interest to the area when new researchers or
students look for an area to research. Therefore, simple and
easy-to-use tools can be used as a catalyst to increase the

4http://www.ict-futebol.org.br/
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Figure 6: COPA Dashboard elements

Figure 7: COPA Orchestration Management

number of researchers in a specific area. COPA provides
a user-friendly container orchestration graphical interface
to improve the research community’s adherence in such an
important subject that is container orchestration.

The experimenter must know the components that com-
pose the experimental environment and the changes during
the time of execution to orchestrate containers. When de-
signing COPA’s Graphical Interface, we always looked for
a simple way to show the necessary information. When
the user enters on the COPA screen, it can already see
the available experiment resources through the dashboard,
shown in Figure 6. Using the dashboard, the experimenter
can inform himself about the number of Container Pools
in the experiment, the total number of containers present
in the configuration, and the number of the containers on
each pool. The dashboard also counts with charts for each
Container Pool on CPU, memory, and network throughput
utilization. For more information about Container Pools
or management actions, the experimenter can go for the
dedicated Web page for Container Pool.

In the Container Pool page, the experimenter can man-

ually manage hosted containers and also click on them
for more information. On this page, the experimenter also
can upload a new container. Moreover, if the Container
Pool has a wireless interface, it is also possible to check
the connected devices and the Signal-to-Noise Ratio (SNR)
concerning each of them. In our experiments, COPA can
monitor one Container Pool containing a WiFi network card.
One-click away, in the side-menu, and the experimenter can
find the orchestration tab, where Orchestration Manager is
located. On this page, the experimenter can find the list
of already uploaded orchestration algorithms and a section
for algorithm upload, as can be seen in Figure 7. Using
Orchestration Manager, the experimenter can start, stop, and
delete an algorithm. Furthermore, COPA enables the upload
of a custom orchestration algorithm. The only requirement
to run the algorithm is that Containers Pools have the
dependencies for the execution, and the script deploys the
orchestration actions through COPA API. The algorithm
can be fed with the monitoring data gathered by COPA
through COPA API, which is described in the COPA’s code
repository [45].

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3035619, IEEE Access

D. QUANTITATIVE RESULTS
Our objective is to understand COPA behavior in an exper-
imental environment. Therefore, we deployed two different
scenarios, one with COPA running on VMs, and other
without COPA. In these two scenarios, we collected three
types of data: (i) the resources utilization from Central Node
and the Container Pool, (ii) the network overhead caused by
monitoring and control messages in the Container Pool, and
(iii) the overhead caused in the migration by utilizing COPA
API besides directly connecting to LXD API.

For evaluating resource utilization, we gathered data from
CPU, Memory, and I/O Disk usage from Central Node and
Container Pool, as can be seen in Figure 8 (A) and (B).
This experiment was run for 120s and collected every 1
second in the Central Node and all Container Pools. In the
Central Node, were gathered 120 samples of every resource,
while the Container Pools were gathered 120 samples for
each, which in total are 360 samples of every Container
Pools’ resource. All the means were calculated with a 95%
confidence interval. The Central Node’s resource evaluation
(A) shows a small increase in the CPU, memory, and disk
I/O utilization. This increase adds up at least 3.7% of single-
core CPU overhead, 14.6% of a 1GB RAM (149.5MB),
and 18.72 Disk I/O operations per second on average.
The increment is due to the Central Node, which has a
Web server with some functionalities such as (i) receives
requests from the experimenter using Graphical Interface
and Monitoring Agents, and (ii) saves monitoring data in
the Central Node’s database. Therefore, like any other Web
server, when increasing the number of users or Monitoring
Agents, it is expected that COPA will increase resource
usage.

In Figure 8 (B), the Container Pool resource utilization is
detailed. Compared to a scenario without COPA, Container
Pool causes an overhead of 0.22% on CPU, 0.68% on RAM
(6.9MB), and no change in Disk I/O operations on average.
Therefore, we can say that Container Pool does not cause
a significant overhead at its host. Moreover, Monitoring
Agent, a component inside Container Pool, can be executed
inside resource-constrained devices, such as Raspberry Pis,
making them part of the experiment environment. Fur-
thermore, Container Pool can escalate quickly because its
resource utilization is not related to the number of devices
in the experiment scenario. The only circumstance that
can increase in Container Pool is the number of messages
changed among Container Pools for monitoring purposes.

The network download and upload of Container Pool in
an experiment of 120 seconds, as shown in Figure 8 (C) and
(D). The network bandwidth usage pattern changes during
the evaluation because the charts’ data are from the very
beginning of the experimentation when COPA is started.
In the 0 seconds, we can observe a high pick in network
bandwidth in both charts. This behavior is due to the SSH
connection utilized to start the experiment in multiples VMs
simultaneously. The initial pick is followed by the second
pick, which is the Central Node communicating every LXD

server hosted by Container Pool VM. After that, we can
notice some seconds without any communication once the
Central Node service is waiting for all Container Pools.
Next, it starts the monitoring where we can see a commu-
nication pattern starts. Besides these patterns, we also can
notice some high picks that excel from the communication
pattern. We assume that is the keep-alive beacons from
SSH utilized to run the experiment or some background
traffic generated by the operational system. On average, the
experimenter must expect at least 0.52 KBps at the uplink
and 0.40 KBps when executing this use case’s scenario.
Therefore, we can consider that there is no substantial
network overhead. Moreover, this control and monitoring
messages traffic through the core network is typical using
optical fibers and other high bandwidth communication
technologies in a MEC scenario.

Finally, we evaluated the difference in response time
when migrating a container through COPA API or by Bare
LXD API, as shown in Figure 8 (E). Different from the
Central Node and Container Pool resources’ evaluation, the
migration evaluation could not be gathered continuously
during the 120s. We evaluated this experiment by migrating
an Alpine 3.9 container 25 times randomly between the
Container Pools. The mean was calculated with a 95%
confidence interval. The results show that the API adds 0.66
seconds on average to the migration command, which can
be not relevant for bigger container sizes. Therefore, we
consider that COPA API does not add significant overhead
in migration container response time.

VI. CONCLUSION
In this article, we present some of the potentials that COPA
can play in container orchestration experimentation. Exper-
imenters can configure COPA on the local environment.
Moreover, testbed owners can provide COPA as a service for
experimenters accessing the facilities. In COPA’s graphical
interface, users can easily find all the available features in
a friendly interface and follow the experimental resources’
monitoring. For orchestration algorithm experimentation,
COPA provides an interface with the essentials configuration
for managing the algorithms at run time. Not all the potential
features were developed for this research, such as the
Workflow module, and we plan to build it as future work.

Besides the not yet developed components, COPA can
be extended to support features for service chaining that
is a central area inside container orchestration applied to
5G networks. Furthermore, with the existence of multiple
operators working on a collaboration to provide network
connectivity, and each of the operators may have different
orchestrators for its network. Thinking of that, the research
on distributed container orchestration can increase produc-
tivity if a tool like COPA provides the right features for the
experimentation.

We intend to improve the COPA’s monitoring system
to provide more information about the network’s quality
and resources to increase the efficacy of the orchestrators
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Figure 8: Evaluation charts for Central Node and Container Pool resources, Container Pool’s Network (Download/Upload), and COPA API response time
overhead.

deployed in COPA. We are already looking forward to
supporting a MEC Radio Access Network (RAN) manager
software called Low-Latency (LL-MEC), which exposes the
RAN information for the upper layer, enabling applica-
tions to read this information and improve QoS. This new
functionality will that the orchestrators on COPA to make
decisions based on the radio network quality.

Another significant enhancement of COPA is to increase
container management support. In this case, the experi-
menter can create its containerized services in any tech-
nology they want. Furthermore, it is essential to support
different solutions for container management since they have
other characteristics, and one experiment can experience
better performance when running in a specific technology.

COPA is already available in the project H2020
FUTEBOL’s testbeds and ready to use. Experiments of the
FUTEBOL project were deployed on top of our solution and
demonstrated in project deliverables and results, proving its
usage. Finally, the tool is functional and full of potential
for further improvements. We hope that it will be beneficial
for future experimenters and help advance the research of
future networks state-of-the-art faster than before.
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