
Evaluating Time-Sensitive Networking
Features on Open Testbeds

Gilson Miranda Jr.∗†, Esteban Municio∗, Jetmir Haxhibeqiri‡,
Daniel F. Macedo†, Jeroen Hoebeke‡, Ingrid Moerman‡, Johann M. Marquez-Barja∗

∗IDLab - imec, University of Antwerp, Belgium
‡IDLab - imec, Ghent University, Belgium

†Universidade Federal de Minas Gerais - Computer Science Department, Brazil
{gilson.miranda,esteban.municio,johann.marquez-barja}@uantwerpen.be

{jetmir.haxhibeqiri,jeroen.hoebeke,ingrid.moerman}@ugent.be
damacedo@dcc.ufmg.br

Abstract—Time-Sensitive Networking (TSN) is vital to enable
time-critical deterministic communication, especially for applica-
tions with industrial-grade requirements. IEEE TSN standards
are key enablers to provide deterministic and reliable operation
on top of Ethernet networks. Much of the research is still done
in simulated environments or using commercial TSN switches
lacking flexibility in terms of hardware and software support.
In this demonstration, we use an open Cloud testbed for TSN
experimentation, leveraging the hardware features that support
precise time synchronization, and fine-grained scheduling accord-
ing to TSN standards. We demonstrate the setup and operation
of a Linux-based TSN network in the testbed using our modular
Centralized Network Configuration (CNC) controller prototype.
With our CNC we are able to quickly initialize the TSN bridges
and end nodes, as well as manage their configurations, modify
schedules, and visualize overall network operation in real-time.
The results show how the TSN features can be effectively used
for traffic management and resource isolation.

Index Terms—TSN, Experimentation, SDN

I. INTRODUCTION

In recent years, the IEEE Time-Sensitive Networking (TSN)
Task Group has been developing a set of standards to enable
reliable and deterministic communication on top of IEEE
802.1 networks [1], [2]. These standards enable Ethernet-based
networks to provide flow isolation, allowing the co-existence
of time-critical and best-effort flows, but avoiding that the
best-effort traffic interfere on the QoS of the time-critical
traffic. Until now plenty of TSN research is done in simulated
environments. However, for further development in this field, it
is of utmost importance that researchers can test their solutions
in real environments using open testbeds.

In this demo we show how open Cloud testbeds can be
used for TSN experimentation by utilizing different hardware
features providing end-to-end time synchronization through
Precision Time Protocol (PTP), traffic classification, and
scheduling. In addition to TSN hardware features, means for
network management and control need to be provided as
well. We demonstrate that our Centralized Network Config-
uration (CNC) controller prototype is capable of setting up
a TSN network in the testbed, managing the fundamental
TSN functions for Network Elements (NEs) initialization,

time synchronization, end-to-end scheduling, and performance
monitoring.

II. TSN AND CNC ARCHITECTURE

Besides time synchronization, traffic scheduling and polic-
ing and reliability features, IEEE 802.1 TSN standards cover
the resource management as well [3]. Network resource man-
agement can be done in fully distributed model, centralized
model, or the centralized network/distributed user model. Our
CNC controller allows us to manage TSN features on Linux-
based NEs. Figure 1a gives an overview of the CNC modules,
while Figure 1b shows the architecture of the agent deployed
on NEs. Figure 1c shows the message flow diagram between
controller and agents.

The main component of the CNC is the TSN Controller
(TSNC), which communicates with the TSN Agents (TSNAs)
through the Southbound Interface. The TSNC provides an
Internal Interface, which allows users (through the Centralized
User Configuration (CUC) API) and other modules (e.g.
Control Loop) to send commands and receive information
from NEs. The TSNC also receives telemetry data in a
publish/subscriber mode, and stores long-term telemetry in a
database. Data visualization is done with a Dashboard module.

In the NEs, the TSNA interacts with the CNC through the
Southbound Interface. A Telemetry Manager controls which
telemetry statistics are reported to the CNC. State of interfaces
and important processes (e.g. linuxptp) are monitored by the
Resource Monitor, and relevant changes are notified to the
CNC. The PTP Manager controls the synchronization service,
while the Schedule Manager applies Time-Aware Scheduling
(TAS) rules and traffic filtering policies. Each NE is identified
by an Unique Identifier (UID), defined on CNC configuration,
and announced during TSNA connection.

III. DEMONSTRATION SCENARIO

Figure 2 shows the topology used in the demonstration,
as well as the traffic flows generated. The CNC is logically
connected to all nodes. PC1 transmits two UDP flows (UDP
Apps 1 and 2, at 1000 packets/s each) to PC2, and PC3
generates TCP traffic to PC4 using iperf. The three schedules
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Figure 1: CNC architecture and communications diagram
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Figure 2: Topology used for the experiments

shown in Figure 3 are applied during the experiment. Each
square represent a slot of 250µs. Slots with a number indicate
which queue is served at a given moment. We allocate queue
0 for best-effort traffic (e.g. PTP and telemetry traffic), queue
1 for iperf, queue 2 for the UDP App 1, and queue 3 for
UDP App 2. Queues crossed represent unallocated slots, and
no transmissions take place. The nodes publish statistics of
99th percentile of one-way delay of the UDP Apps, and iperf
throughput to the CNC for real-time visualization.
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Figure 3: Schedules used for traffic control experiments

IV. DEMONSTRATION OUTPUT

Table I shows the synchronization accuracy achieved by
each node, with SW1 running as PTP GrandMaster (GM),
SW2 and SW3 running as PTP Boundary Clocks (BCs), and
the PCs running as PTP slaves. During most of the time all
nodes achieve sub-microsecond synchronization, a sufficient
margin for our schedules using 250µs slots.

Figure 4 shows the scheduling results. Schedule 1 assigns
a single slot to each flow. Schedule 2 adds one more slots

Table I: Synchronization offset in nanoseconds from GM

Node SW2 SW3 PC1 PC2 PC3 PC4
Median 218 305 192 394 220 416

90th 572 738 478 984 520 998
99.9th 1061 1535 1020 1795 1069 5624

to iperf flow, doubling its throughput. This change does not
affect the delay of UDP Apps. Schedule 3 assigns the slot to
UDP App 1, reducing its one-way delay, and returning iperf
throughput to 5.5MB/s. Finally, Schedule 1 is applied again
and all flows return to their initial behavior. UDP App 2 is
unaffected during the experiment.
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Figure 4: Scheduling on Virtual Wall testbed

V. CONCLUSION

In this paper we demonstrate the utilization of TSN features
on nodes of the Virtual Wall testbed, using our CNC controller
prototype. Our results show how fine-grained control and flow
isolation can be achieved using the TSN features, and the
suitability of exiting open testbeds for TSN experimentation.
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