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Abstract—In the face of intensifying global challenges, includ-
ing climate change, geopolitical turbulence, and both natural
and anthropogenic disasters, the urgency of effective disaster
management has been brought to the forefront. Risk reduction,
preparedness for response, and recovery is of crucial importance
in this context. Communication technologies play an essential
role in disaster management, and among the technologies used,
Wi-Fi networks play a significant part. When traditional commu-
nication systems are overloaded or break down during a disaster
scenario, Wi-Fi networks can provide an alternative means of
information dissemination and coordination for response teams,
as well as communication for victims affected. In this paper, we
introduce a novel slicing algorithm that, using a logic similar
to human thinking, aims to dynamically optimize the resource
allocation over Wi-Fi networks for critical services. By exploiting
In-band Network Telemetry (INT) techniques to monitor the
network, our work aims to dynamically prioritize certain critical
services by applying network slicing techniques in real time even
under difficult network conditions, thus improving the role of
Wi-Fi networks in disaster management situations.

Index Terms—Network Slicing, Airtime, Wi-Fi, Testbed, In-
band Network Telemetry, Fuzzy Logic.

I. INTRODUCTION

Global crises challenges such as climate change, geopolit-
ical unrest, natural and human-caused disasters are becoming
an increasingly important concern. Effective disaster man-
agement, including risk reduction, response preparation, and
recovery, has never been more critical [1]. Communication
technologies play an essential role in disaster management
[2], and among such technologies, Wi-Fi networks can play
a significant part. When traditional communication systems
are overloaded or break down during a disaster scenario, Wi-
Fi networks can provide an alternative means of information
dissemination and coordination for response teams, as well as
communication for affected victims. During disaster scenarios,
communication networks are often subject to significant stress
that can be caused by increased demand [2], infrastructure
damage, or power outages. When multiple critical services,
such as real-time voice communications (VoIP), Programmable
Logic Controllers (PLCs) for remote control, and streaming
video for information dissemination, compete for the same
network resources as in Figure 1, the situation further dete-
riorates. Preserving the Quality of Service (QoS) for critical
services under these conditions is critical, yet challenging.
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Fig. 1. Disaster Scenario

The problem of network overload due to the lack of re-
sources and consequent degradation of services during crisis
scenarios is a critical limitation for the exploitation of Wi-
Fi networks as an effective aid for disaster management.
However, the behavior of Wi-Fi networks, particularly under
stress conditions, is complex and difficult to model from a
mathematical perspective. This complexity arises from the
multitude of variables and parameters that influence the per-
formance of the network. Furthermore, due to the random
access nature of Wi-Fi networks, they are inherently non-
deterministic, adding another layer of difficulty in prediction
and modeling. Due to this complexity, it is not possible to
control specific variables to change the output of the network
in a predictable manner, as there is no precise mathematical
model.

The use of mechanisms that can efficiently manage network
resources is crucial to ensure that critical services receive
the necessary network resources to properly function, without
compromising the overall network stability. In this paper, we
introduce a slicing algorithm that is designed to dynamically
prioritize critical services over a Wi-Fi network using a similar
logic to human thinking. Unlike the binary “true” or “false”
of Boolean logic, the algorithm mirrors human logic by
interpreting variables in a spectrum, such as “completely true”
to “completely false”, including elements such as “partially



true” or “partially false”. This nuanced approach allows for
decisions that better reflect real-world complexity, enhancing
network resource management.

By utilizing In-band Network Telemetry (INT) techniques
[3] for network monitoring and to provide real-time feedback,
our work focuses on dynamically allocating the appropriate
amount of airtime to different services. Airtime refers to the
amount of time a Wi-Fi network dedicates to transmitting
data from a certain service. Our goal is to uphold the QoS
required by certain critical services, even under strenuous
network conditions, thus improving the role of Wi-Fi networks
in disaster management situations.

Recent studies [4]–[12] have proposed various solutions for
Wi-Fi network slicing, such as dynamic resource allocation
mechanisms [4], [5], Mixed Integer Linear Programming opti-
mization [6], [8], and Software-Defined Radio Access Network
(SD-RAN) management approaches [7], [12]. However, most
of these studies do not delve into practical implementations
with real hardware, thus eluding intrinsic physical phenomena
and engineering challenges, such as modifications to the
packet scheduler of a Wi-Fi AP. Additionally, the inclusion
of telemetry options, particularly INT, remains sparse with
a notable exception being [12]. Furthermore, the frameworks
used on the real testbed works do not support the latest Wi-Fi
standards (Wi-Fi 5 and 6). Our work addresses these gaps,
providing a comprehensive solution compatible with current
Wi-Fi standards and validated in real-world scenarios.

The remainder of the paper is organized as follows: Section
II provides a detailed discussion on the relevance of network
slicing for Wi-Fi networks, Section III discusses the metrics
and benchmarks employed to evaluate the performance of
the proposed solution. Section IV presents the design and
implementation details of the slicing algorithm. Section V
describes our experimental setup and the results obtained.
Finally, conclusions are drawn in Section VI.

II. SLICING ON WI-FI NETWORKS

Network slicing represents a revolutionary approach that
facilitates the creation of multiple virtual networks within a
common physical infrastructure. Each resulting virtual net-
work is referred to as a slice [13]. Each individual slice can be
precisely calibrated to meet a unique set of bandwidth, latency,
and reliability requirements providing a versatile solution
capable of handling a wide range of data traffic. For example,
a single network slice can be properly tuned to provide low-
latency connections, ideal for real-time applications such as
emergency alert systems or remote control of rescue robots
when it may be too dangerous for humans to enter certain
areas. Conversely, another slice can be adjusted to meet
high bandwidth requirements, essential for real-time video
streaming that can be crucial for situational awareness.

By leveraging slicing for Wi-Fi networks, significant effi-
ciency improvements can be achieved, especially when using
Software-Defined Network (SDN) techniques to centrally and
dynamically manage the allocation of resources for network
services according to their priorities [14]. Hence, INT serves as
a pivotal element for real-time network monitoring, allowing
the system to swiftly adapt to variations in demand, the
introduction of new services, or changes in user behavior.

Therefore, by integrating slicing, SDN, and INT we can
significantly improve the allocation of resources to the Wi-
Fi network making it more robust and reliable for disaster
management applications.

A. The Resource: Airtime
Since Wi-Fi networks operate in a shared medium, multiple

devices will compete to access the wireless channel to transmit
and receive data. A fair distribution of communication oppor-
tunities, known as airtime, among connected devices is crucial
for the efficient functioning of the network [15].

Airtime refers to the limited amount of time available for
data transmission within a wireless network, i.e., the time over
the air. Ideally, a certain amount of airtime should be equitably
distributed among all connected devices to ensure balanced
network performance. Airtime is a valuable resource because
it significantly affects the overall capacity and performance of
the Wi-Fi network.

B. Software-Defined Network Controller
In this work, we used an SDN platform that is based

on an architecture previously developed for Time-Sensitive
Networks (TSNs) and can be used to configure general-
purpose networks [16]. The architecture adopts a controller/
agent approach, with the Time-Sensitive Network Controller
(TSNC) serving as the centralized entity, while the Time-
Sensitive Network Agent (TSNA) is implemented on Network
Elements (NEs) that require fine-grained control.

The control plane uses IPv4 addresses only, while the data
plane is based on IPv6. This design choice allows the use
of IPv6 extended headers to implement INT, which enables
detailed per-hop and per-flow monitoring. Moreover, this also
provides a clear distinction between both control and data
planes. Figure 2 illustrates the components of the TSNC that
are relevant to this study, with a particular focus on the
elements that enable the network programmability. The main
communication between TSNC and TSNA is done through the
Centralized Network Controller (CNC) module. The internal
interface facilitates communication between the various mod-
ules, serving as a central point of interaction. This interface
allows modules to query topology information, link states, and
apply configurations to NEs based on their User Identifications
(UIDs). Data plane telemetry reports are sent directly to the
Subscriber socket of the Monitor module.
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Fig. 2. TSNC architecture

Figure 3 shows the TSNA components for an AP. The key
component of TSNAs that enables network slicing is the Click
framework [17], a software-based modular router designed to
provide flexibility and modularity. Other components of TSNA



include the INT Manager, which manages the In-band Network
Telemetry framework. This framework adds timestamps and
packet counters as extended headers on IPv6 data packets
and generates periodic reports with this data. Based on these
reports, the Monitor module of the TSNC can calculate QoS
metrics of throughput, delay, jitter, and Packet Loss Ratio
(PLR).

Fig. 3. TSNA architecture

The Resource Monitor is responsible for continuously mon-
itoring the status of the NE in terms of services, network inter-
faces, hardware, and topology changes. During TSNA startup,
the Resource Monitor analyzes the capabilities of the node
and communicates them to the TSNC through an announce-
ment message. Finally, the Traffic Manager handles traffic
classification, filtering, and shaping. This module processes the
rules received from the TSNC to label packets with specific
Differentiated Services CodePoint (DSCP) values based on the
5-tuple that defines a flow: source IP, destination IP, Source
Port, Destination Port, and Protocol. Depending on the DSCP
value, packets in the flow are routed to different queues within
the Click framework and handled by the scheduling/slicing
algorithm.

C. In-band Network Telemetry (INT)

Data plane telemetry is obtained via INT and implemented
on Click. The TSNA continuously monitors telemetry infor-
mation and publishes the the Monitor element of the TSNC.
The framework described by Haxhibeqiri et al. [18] has been
adapted to add packet counters (packets transmitted/received),
byte counters (bytes transmitted/received), and timing informa-
tion (timestamps at each hop) as extended IPv6 packet headers.
Telemetry information is collected for each flow identified
as a 5-tuple: source address, destination address, source port,
destination port, and transport protocol.

Figure 4 provides an overview of our INT mechanism.
The controller sends an INT configuration to the INTSource
element of an NE, informing the 5-tuple of the flow to be
monitored. The INTSource intercepts each packet leaving
the NE and adds the INT header with packet counters and
timestamps if the 5-tuple is from a flow being monitored.
The INTInter at the AP also checks the packets and appends
telemetry data. This happens at each hop until the packet with
all the telemetry reaches the INTSink at the destination. The
INTSink extracts the telemetry data, forwards the original data

packet to higher network layers, and transmits a report through
the control plane connection to the controller.

Fig. 4. INT report mechanism

In the controller, the QoS Monitor collects a sequence
of packets and calculates throughput, delay, jitter, and PLR
metrics. Throughput is calculated based on bytes transmitted
in a given time period, while delay and jitter are calculated by
comparing the timestamps of when the packet was generated
and delivered to its final destination. The PLR is calculated
from the difference between transmitted and received packets
in a period.

III. BENCHMARK

Queuing plays a pivotal role in Wi-Fi networks as it
manages the distribution of network resources among various
data flows, ensuring that no single flow monopolizes the
network. This is particularly crucial when different services
have varying priorities and QoS requirements. In this work,
we evaluate the network behavior when using FQ-CoDel (Fair
Queuing and Controlled Delay) [19] as a baseline, as it is the
default queuing discipline (qdisc) used by our Linux-based
Wi-Fi AP. FQ-CoDel is a combination of two algorithms: Fair
Queuing (FQ) and Controlled Delay (CoDel). FQ sorts the
outgoing traffic into different flows trying to prevent any single
data flow from monopolizing the network. Each of these flows
essentially gets its own First-In-First-Out (FIFO) queue and
then is managed by CoDel. CoDel monitors the amount of time
that packets spend in the queue. If this so-called “sojourn time”
exceeds a certain threshold, indicating potential congestion,
CoDel drops packets from the front of the queue. This division
allows network resources to be equally distributed but does not
take into account the different priorities of the services and the
QoS requirements.

A. Baseline Experiment
To establish a performance baseline, we conducted an

experiment with a specific setup: two client nodes, an AP,
and a server, as illustrated in Figure 5. We utilized a traffic
generator with diverse traffic patterns. We considered downlink
traffic, from the server to the client nodes, to capture the
behavior of the Wi-Fi network. These patterns, as detailed in
Table I, included: i) a VoIP service over UDP with a data rate
of 20 Mbps to Client 1; ii) a Messaging service over TCP with
a data rate of 4 Mbps also to Client 1; and iii) a Video service
over UDP with a data rate of 40 Mbps to Client 2. All flows
originate from the server node.
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Fig. 5. Testbed Architecture

TABLE I
TRAFFIC PATTERN

Service Destination Protocol Data Rate
VoIP Client 1 UDP 20 Mbps

Messaging Client 1 TCP 4 Mbps
Video Client 2 UDP 40 Mbps

The graph in Figure 6 shows that under normal network
conditions (prior to saturation with background traffic), the
traffic traverses the network steadily. However, a noticeable
deterioration in the performance of different services is ob-
served once the background traffic starts. This degradation can
be attributed to the FQ-CoDel scheduling algorithm, which
does not take into account the required QoS and priority
of the different services, thus allocating an uneven share of
airtime to the different flows. Therefore, it is necessary to
adopt more effective scheduling methods to perform resource
slicing and allocate the necessary resources for the different
network services, according to their priorities.
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Fig. 6. Network behaviour without network slicing

IV. FUZZY LOGIC FOR AIRTIME SLICING

Fuzzy Logic is able to manage uncertainties and non-
linearity inherent in complex systems such as telecommunica-
tion networks. Leveraging fuzzy linguistic variables and rules,
this logic can interpret and manipulate imprecise and vague
data, thus offering a considerable advantage over traditional
control systems. The Fuzzy-based slicing algorithm in this

work plays a critical role in the decision-making for airtime
allocation. It is responsible for creating, modifying, and ef-
ficiently managing network resources in order to adapt the
airtime allocation under varying network conditions dynami-
cally.

This algorithm is designed as an extension of the Network
Manager submodule, located within the CNC from Figure 2.
The structure of our algorithm, depicted in Figure 7, employs
a systematic sequence of steps to control the allocation of
airtime across the network. The algorithm is composed six
main steps: i) configuration; ii) network statistics collection;
iii) network evaluation; iv) determining network status; v)
Decision Maker; and vi) Schedule Update. Figure 8 illustrates
the process flow of the algorithm and the control elements
involved.

Fig. 7. Slicing Algorithm
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The first phase is the configuration of the ZeroMQ [20]
sockets for communication with other components of the
controller. The algorithm starts in phase (ii) by collecting the
most recent INT reports from the database located on the
TSNC. The INT reports are decoded by extracting information
such as network service id, message date and time, and
performance metrics of data rate, delay, jitter, and packet loss
ratio. Using comparative analysis, if the target QoS metrics are
not met, a network slice for the service is configured for the



service. The algorithm continuously assesses if the QoS values
for the service align with the expected values, and generates
a flag value that indicates whether the allocation of resources
for a service must be modified. In practice, it indicates if the
service is sufficiently served with the allocated airtime, or if it
operates with an excess of resources. In cases where a surplus
exists, the extra airtime can be reallocated to other slices.

The Fuzzy Controller, detailed in Figure 9, employs four
distinct fuzzy sets representing various network parameters:
data rate, delay, jitter, and airtime. Each of these parame-
ters is linguistically modeled using triangular and trapezoidal
membership functions, enabling the controller to reason in a
human-like manner.

The membership functions [21] used in our work are tri-
angular and trapezoidal. These functions map the crisp inputs
(exact numerical values) to fuzzy sets which represent vague
concepts such as ‘low’, ‘high’, ‘acceptable’, ‘very low’, and
‘very high’, providing a control strategy more adaptable to
human thinking and able to handle the ambiguities inherent
in these parameters. This controller design allows for the
customization of a control strategy based on the slice type,
demonstrating its adaptability. Different membership functions
are set to map input variables depending on the slice type.

For instance, in the scenario where the network slice cor-
responds to a network service targeted as QoS, such as video
streaming or VoIP, the variables to be regulated are defined
through certain membership functions. Those functions differ
from a service targetted as Best-effort (BE), e.g., messaging,
which utilizes a distinct set of membership functions. This
part of the process highlights the adaptability of the algorithm
to ensure efficient resource allocation and optimal network
performance. In the end, the results of these processes are
sent to the CNC to apply the necessary updates.

Fig. 9. Fuzzy controller algorithm

V. EXPERIMENTATION

In this section, we describe how we conducted our ex-
periments to validate our work and the effectiveness of the
algorithm. We first discuss the network topology, then the

hypothesized scenario, and finally, the parameters used as QoS
for evaluating the network. The experiment was conducted in
a real testbed by reproducing the topology of a typical Wi-Fi
network, shown in Figure 10.

A. Testbed
Our testbed consists of 5 nodes and a controller. Three

nodes serve as endpoints - two clients and a server, while
two nodes function as bridge, switch, and AP. The two clients
are connected to the same AP with Wi-Fi 5 (IEEE 802.11ac)
features enabled. The AP is connected to a network switch,
creating a path for data transmission and reception with other
networks. The switch is connected to a wired node (Server)
through a reliable Ethernet connection. All nodes have a logi-
cal connection to a central controller. In a realistic deployment,
this connection is not required for Wi-Fi clients. The traffic
flows originate at the server and traverse the network to reach
the clients.

Emergency Operations Center Rescue Robot Operator

V
o

IP
 flo

w
 

V
id

eo
 f

lo
w

 

Iperf server

AP
Switch

M
e
ssage

s flo
w

 

Fig. 10. Testbed scenario

In Figure 10 we hypothesized a scenario following a
catastrophic earthquake, where the primary communication
infrastructure is out of order, so the emergency services rely on
a single Wi-Fi AP that serves two main clients: the Emergency
Operations Center for video streaming of disaster-stricken
areas, the field emergency response team using VoIP for real-
time communication, and has control of the rescue robots
requiring low latency for real-time navigation. The quality
of critical services must be maintained for effective disaster
management despite high background traffic.

To emulate different network services, we used Iperf1,
known for its ability to generate network traffic with specified
characteristics. To replicate the characteristics of specific ser-
vices, we configured Iperf according to the parameters reported
in Table I.

B. Evaluation
Within the adopted architecture, our goal is to evaluate the

performance and effectiveness of our algorithm in an environ-
ment reflecting realistic network conditions. The presence of
multiple clients requires the division of AP resources, intro-
ducing a crucial level of complexity into network operations.

We evaluated our algorithm by benchmarking it against the
FQ-CoDel algorithm, the default algorithm in Linux-based

1https://www.iperf.fr/



APs. The rationale for selecting FQ-CoDel as a comparison
point is its widespread adoption in operational systems, a
significant number of which are Linux-based. Such popu-
larity makes FQ-CoDel a pertinent and practical standard
for comparison. We conducted the tests under conditions of
network saturation, to push the capabilities of our algorithm to
their limits providing valuable insights into their performance
and adaptability in situations of high demand, mirroring real
network conditions.

In Figure 11 we present the behavior of the traffic within the
Wi-Fi network. We compare the two different scheduling al-
gorithms, FQ-CoDel and Fuzzy, applying them consecutively,
to observe any disparities in network behavior, which can
be attributed to the different scheduling algorithms. Ideally,
different types of services labeled as background, messages,
video streaming, and VoIP have different priority levels in
disaster scenarios.

In Figure 11 from t1 to t2, FQ-CoDel is the algorithm
driving the network traffic scheduling. From t1 to t2, we
can notice high traffic in terms of data rate, referred to as
background service. However, the other three types of services
(messages, video streaming, and VoIP) have a moderate data
rate.

The key moment comes at time t2 when we change the
traffic scheduling algorithm to Fuzzy. Because of this, a sharp
change in the behavior of each service at time t2 can be seen in
terms of data rate. This change essentially occurs because the
Fuzzy algorithm creates slices on the Wi-Fi network, assigning
more airtime, to higher-priority services and fewer resources to
lower-priority services. The increase in data rate starting from
time t2 for messaging, video streaming, and VoIP services
highlights how the network performance for such flows was
affected by the background traffic. The background service
demands more network resources than the other services,
and such resources were granted by the FQ-CoDel algorithm.
However, these are not granted after t2 by Fuzzy.

Subsequently, we examined the difference in network per-
formance in terms of data rate, jitter, delay, and packet
loss rate. We compared the Cumulative Distribution Function
(CDF) of each metric for both scheduling algorithms, as
shown in Figures 12-15. In addition, Table II shows the 99th
percentiles of the measurements and the gains against FQ-
CoDel.

The CDF of the data rate in Figure 12 shows how all curves
with a solid line are shifted to the right compared to the dashed
lines, demonstrating how the data rate of the various services
is higher by applying our algorithm, compared to FQ-CoDel.
More precisely, on average there is a data rate gain of more
than 100% for the video and VoIP slices, and 44% for the
Messaging service when we switch from FQ-CoDel to Fuzzy,
as indicated in Table II.

For the delay and jitter, the CDFs shown in Figures 13 and
Figure 14, highlight the improvement of the metrics with over
94 % of gains across all services. This confirms the reliability
gains offered by the algorithm in dealing with critical real-time
services. Finally, the CDF of packet loss ratio in Figure 15
shows a significant reduction from using the Fuzzy algorithm,
reducing losses by 73% on average compared to the FQ-CoDel
algorithm, meaning that crucial data can be transmitted more

reliably.
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VI. CONCLUSION

Our study presents an approach for supporting commu-
nications under disaster management scenarios using Wi-Fi
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TABLE II
PERFORMANCE GAINS - 99TH PERCENTILE

Metric Algorithm Video S. Messages VoIP
Datarate Gain % FQ-CoDel - Fuzzy 127.27 44.33 122.22
Delay Gain % FQ-CoDel - Fuzzy 98.47 97.39 94.17
Jitter Gain % FQ-CoDel - Fuzzy 97.18 97.61 96.64
Loss Gain % FQ-sCoDel - Fuzzy 87 58 99.1

networks. We apply network slicing to Wi-Fi networks to
effectively allocate network resources dynamically and cus-
tomized to critical services, ensuring their correct performance
even when the network is saturated. The mechanism we
created exploits INT techniques and Fuzzy logic to handle the
uncertainties and nonlinearities present in complex telecom-
munication networks.

The systematic sequence of steps of the algorithm checks
the allocation of airtime on the network, ensuring optimal
allocation of network resources and performance. Through
our experiments, we validated the reliability and effectiveness
of our work. We hypothesized a disaster scenario using real
equipment, demonstrating that our approach significantly im-
proves the performance of critical services in Wi-Fi networks
even under saturation conditions.

In future research, we aim to extend our work within the
context of Wi-Fi 6. We plan to evaluate the impact of INT by
studying channel congestion through a detailed analysis. Ad-
ditionally, we intend to enhance our algorithm by integrating
the Adaptive Neuro-Fuzzy Inference System (ANFIS). This
integration will enable the algorithm to autonomously adapt to
changing conditions. The ANFIS approach, which combines
the ability to handle uncertainty and imprecision inherent in
fuzzy logic with the capacity to learn from data, presents a
potent methodology for the modeling and control of complex
systems.
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scheduler and active queue management algorithm, Internet Requests
for Comments, RFC, Jan. 2018. [Online]. Available: https://datatracker.
ietf.org/doc/html/rfc8290.

[20] ZeroMQ contributors, Zeromq, Web page at https : / / zeromq.org /get -
started/, 2023.

[21] Y. Dote, “Introduction to fuzzy logic,” in Proceedings of IECON ’95 -
21st Annual Conference on IEEE Industrial Electronics, vol. 1, 1995,
50–56 vol.1. DOI: 10.1109/IECON.1995.483332.


