
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Hardware Efficient Clock Synchronization for Wi-Fi
and Ethernet Based Multi-hop Network Using PTP

Muhammad Aslam, Wei Liu, Xianjun Jiao, Jetmir Haxhibeqiri, Gilson Miranda, Jeroen Hoebeke, Johann
Marquez-Barja and Ingrid Moerman, Member, IEEE

Abstract—Precision Time Protocol (PTP), a state-of-the-art
clock synchronization protocol primarily designed for wired net-
works, has recently gained attention in the wireless community,
due to the increased use of IEEE 802.11 Wireless Local Area Net-
works (WLAN) in real time distributed systems. However, all the
existing WLAN based PTP designs either incorporate software
Timestamping (TS) delivering poor clock synchronization accu-
racy, or Hardware (HW) TS providing better synchronization
accuracy at the cost of a significant amount of additional HW
for TS support. Moreover, the performance of the existing PTP
solutions is generally evaluated over simple single-hop networks,
while the performance of these solutions over complex multi-hop
networks is taken for granted. In this paper, a new Software
Defined Radio (SDR) based approach to implement PTP is
introduced and validated for IEEE 802.11 WLAN. Instead of
using a dedicated HW clock, the prototype utilizes the Timing
Synchronization Function (TSF) clock, which is already defined
in IEEE802.11 standard for synchronization between access point
and WLAN stations. The clock synchronization performance of
our novel solution is thoroughly investigated over both single-hop
WLAN and multi-hop wired-wireless networks. Experimental
results unveil that 90% of the absolute clock synchronization
error falls within 1.25 µs with our approach.

Index Terms—PTP, IEEE 802.11, Wi-Fi, Ethernet, Clock Syn-
chronization, Hardware Timestamping, openwifi, TSF, Wired-
wireless Network.

I. INTRODUCTION

CLOCK Synchronization (CS) is one of the prominent
technologies for building real-time distributed networks.

It enables the nodes in the distributed network to share
the same notion of time. It is crucial for a system where
performance highly depends on the CS accuracy of the net-
works. Examples of such systems include, Ultra-Reliable Low-
Latency Communications (URLLC) in Industrial Wireless
Sensor and Actuator Networks (IWSAN) [1], audio or video
streaming over distributed networks [2], and network based
motion control [3].

Precision Time Protocol (PTP) is a state-of-the-art CS
protocol introduced in the IEEE 1588 standard [4]. It is
the most frequently used CS protocol in wired distributed
networks and is capable of providing sub-microsecond CS
accuracy. The CS process in PTP is typically accomplished

M. Aslam, W. Liu, X. Jiao, J. Haxhibeqiri, and J. Hoebeke, I. Mo-
erman are with IMEC-IDLab, Department of Information Technology,
Ghent University, Ghent, Belgium (e-mail: muhammad.aslam@ugent.be;
wei.liu@ugent.be; xianjun.jiao@ugent.be; ingrid.moerman@ugent.be; jet-
mir.haxhibeqiri@ugent.be; jeroen.hoebeke@ugent.be).

G. Miranda and J. Marquez-Barja are with IMEC-IDLab, Antwerp
University, Antwerp, Belgium (e-mail: gilson.miranda@uantwerpen.be;
johann.marquez-barja@uantwerpen.be).

Fig. 1. An example of PTP based (a) conventional wired network and (b)
wired-wireless hybrid network when configured in E2E mode.

in two steps: establishing master-slave hierarchy, and syn-
chronizing the master-slave clocks. In the former step, all the
nodes in the network exchange announce messages containing
information pertaining to their clocks’ quality. The nodes later
leverage the best master clock algorithm to elect a node with
the best quality clock as a reference clock in the network.
The reference clock acts as master and all the rest of the
nodes’ clocks are slaves. In the later step, the master clock
periodically exchanges special messages with slave clocks and
the type of these messages depends on the configured modes.
While these special messages are Sync, FollowUp, DelayReq,
and DelayResp in End-to-End (E2E) mode, the Peer-to-Peer
(P2P) mode uses Sync, FollowUp, PdelayReq, PdelayResp, and
PDelayRespFollowUp messages. Slave clocks in the network
extract the master clock information from these messages
and synchronize to it by computing the time difference. In
principle, any of the two modes can be used, but they can
also be combined in a network. Note that the PTP messages
can be transported over different types of network layers such
as PTP over UDP (encapsulated in IPv4 or IPv6 payload), and
PTP over Layer 2 network (i.e., encapsulated in IEEE 802.3
payload without transport layer).

The aforementioned process is not only applicable to a
single hop network, but can be used to establish clock syn-
chronization in a multi-hop network across different network
domains (e.g., wired and wireless). A multi-hop PTP network
consists of: (i) a Grand Master (GM) clock which is the
primary clock for CS; (ii) one or more Boundary Clocks (BC)
which can be configured as slave clock on one port and as
master clock on the other ports; and (iii) single-port Ordinary
Clock (OC) which can only be used either as slave or master

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 2. Locations for timestamping in clock synchronization protocols,
where HW TS and SW TS denote hardware timestamping and software
timestamping, respectively.

clock. An example of a practical multi-hop PTP based CS
network configured in E2E mode is shown in Fig. 1-a. Alter-
natively, BC can be replaced by Transparent Clock (TC), BC
and TC are mathematically equivalent in terms of time offset
calculation for CS. The main difference is that TC forwards
PTP messages to the next hop and compensates the time the
messages reside in the device (residence time), whereas BC
generates new PTP messages. For practical reasons, in this
paper we use BC in the E2E mode.

The CS accuracy of PTP is defined as the remaining time
difference between a master and a slave which cannot be
further reduced. The CS accuracy of PTP depends upon the
timestamps captured at the moment of reception or transmis-
sion of packets, among others. Fig. 2 shows the different
locations for Timestamping (TS) in PTP. TS in PTP can be
achieved via Hardware (HW) or Software (SW). HW TS is
produced at or relatively close to the physical layer and it is
realized by using dedicated HW to assist the TS. On the other
hand, SW TS is generated in device drivers or at a higher
layer of the network stack without using any dedicated HW.
The CS accuracy is significantly affected by the location of
TS, and higher CS accuracy requires the TS location to be as
close as possible to the physical layer, so that the timestamp
is minimally affected by the time variation caused by packets
travelling through the network stack. Since HW TS happens
at or close to the physical layer, as illustrated in Fig. 2, a HW
TS based PTP clock is generally more accurate than a SW TS
based PTP clock.

Most of the PTP based networks have been implemented
over the wire [5]–[8]. For instance, CIPSync is a PTP com-
pliant industrial solution which provides CS accuracy of a
few nanoseconds over conventional Ethernet [7]. Another
example is PROFINET, a standard for data communication
over industrial Ethernet, which uses PTP as its CS protocol [8].
The industry however is increasingly interested in extending
PTP from wired network to wireless in the form of a hybrid
multi-hop network for more flexibility, increased scalability
and reduced deployment cost [9]. An example of a simple
hybrid multi-hop is shown in Fig. 1-b. This has led to the

introduction of Timing Measurement (TM) and subsequently
Fine Timing Measurement (FTM), which are the extensions
of IEEE 802.1AS standard to enable CS over IEEE802.11
network [10].

Academic researchers have proposed several wireless CS
solutions [11]–[17]. SW TS based PTP solutions are simple
and easy to realize, but they provide relatively poor CS
accuracy in the range of several microseconds [11]–[13]. The
CS accuracy can be further degraded due to propagation delay
asymmetry potentially produced from different modulation
and coding schemes (MCS) [13]. On the other hand, HW
TS based PTP performs better, but, at the cost of dedicated
HW blocks added to realize HW TS [14]–[17]. Moreover, the
CS performance of these PTP solutions is mostly analysed
on a single-hop network. The performance of these solutions
over complex multi-hop network is either taken for granted or
simply left as future work. In addition to academic research, a
few industrial products are known on this topic [18], [19].
However, upon further exploration, it is found that these
solutions, which claim to support FTM, can only be used
for ranging applications, as the FTM TS is not exposed to
the Linux Operating System (OS). Thus, to the best of our
knowledge, these solutions cannot be directly used for CS
applications.

In this paper, we have made an effort to enable HW TS
based PTP in openwifi [20], an open-source chip design of
IEEE 802.11. Unlike previous work which uses an additional
clock for HW TS, we have leveraged the existing Timing Syn-
chronization Function (TSF) clock with minimal modifications
of openwifi in Field Programmable Gate Array (FPGA) to
achieve the same purpose. The approach is not only hardware
efficient, but also allows the existing TSF based CS protocols
to improve CS accuracy (e.g., Time Advertisement (TA)
mechanism introduced in IEEE 802.11 standard). Moreover,
we add necessary callbacks in the openwifi driver to make
the TSF clock compliant to the PTP Hardware Clock (PHC)
subsystem of Linux. In this way, we can use the existing PTP
application and the support infrastructure in Linux [21]. Lastly,
the performance of our solution is characterized over both
single-hop and a multi-hop network across wired and wireless
network domains.

The rest of the paper is structured as follows. Related work
is detailed in Section II. Section III describes our method to
enable PTP on IEEE 802.11 network. Experimental results are
discussed in Section IV. Lastly, conclusions and future work
are given in Section V.

II. STATE OF THE ART

There have been many attempts to implement PTP over
IEEE 802.11 Wireless Local Area Network (WLAN). These
works can be categorized into SW TS based PTP, and HW TS
based PTP implementations.

It is worth noting that the metrics commonly used in
literature to evaluate the performance of these solutions are
the mean (µ) and standard deviation (σ) of CS error over
time. Given Cerr represents CS error between the reference
clock (i.e., master clock) and the clock to be synchronized

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(i.e., slave clock), these values are calculated by Eq. 1, Eq. 2,
respectively.

µ =
1

N

N∑
n=1

Cerr(n) (1)

σ =

√√√√ 1

N − 1

N∑
n=1

(Cerr(n) − µ)2 (2)

where N represents the total number of available CS error
samples. In addition to these metrics, the Wi-Fi Alliance has
announced a Wi-Fi TimeSync certificate to specify the require-
ment of CS performance between multiple Wi-Fi devices [22].
The certification requires the 90th percentile of the absolute
CS error (P90) to be within 5.5 µs for 90% of the observed
time (i.e., 120 sec). In this paper, Eq. 3 is used to quantify
the P90

P90 =

{
i, if f(i) = 0.9

0, otherwise
(3)

f(i) =
1

N

N∑
n=1

1Cerr(n) where

1Cerr(n) =

{
1, if |Cerr(n)|≤ i
0, otherwise

(4)

where f (i) (empirical cumulative distribution function) rep-
resents the percentile of absolute CS error at ith point. In other
words, the i value denotes the P90 when f (i) is equal to 0.9.
To check the compliance with Wi-Fi TimeSync certificate, we
include P90 together with the mean and standard metrics to
measure the CS performance of our solution in a network.

A. PTP with software timestamping

SW TS generally happens at the application layer, within
the network protocol stack, or in the device driver of a radio
(see Fig. 2). Chen Wu et al. [11] have proposed a PTP
solution over IEEE 802.11 WLAN with SW TS realized at
the application layer. To mitigate the impact of asymmetric
bidirectional delay of WLAN on the PTP performance, they
have first designed a delay filtering algorithm based on Kalman
filter, and then introduced a modified Proportional Integral (PI)
controller based clock servo system. The proposed solution is
validated on a Linux based embedded development board. The
CS accuracy is limited to -14.24 µs with a standard deviation
of 27.65 µs. Authors in [12] have investigated a PTP solution
over IEEE 802.11 WLAN, where SW TS is done inside the
interrupt handling routine of the Ath5k1 driver. The Ath5k is
a radio driver used by Atheros AR5xxx chipset family in the
Linux kernel. However, the mean CS accuracy of this work
is still in the range of several microseconds; i.e, 6.60 µs with
0.58 µs standard deviation [13].

Another design of PTP over IEEE 802.11b WLAN is
investigated in a Linux Personal Computer (PC) [16]. To
improve the SW TS, they have made changes in the radio
driver of Linux. The approach has brought better CS accuracy

1https://wireless.wiki.kernel.org/en/users/Drivers/ath5k

(i.e., average offset error of 4.6 µs with 1.58 µs standard
deviation) when configured in Access Point (AP) mode.

The major missing pieces of the aforementioned solutions
are that: (i) the CS performance is only analyzed over single-
hop wireless network, and (ii) the CS performance is evaluated
with PTP packets exclusively (i.e., without any other traffic
load on the network besides PTP messages). An ambitious
effort is made in [23] to investigate the performance of
PTP over multi-hop hybrid network. The work has however
used SW TS in the wireless part of the network and the
performance of their work is not tested in the presence of
non-PTP background traffic.

To summarize, all these SW TS based solutions have
been realized over commercial off-the-shelf WLAN chipsets
without any hardware modification. They provide decent CS
accuracy (in the order of several microsecond). However the
CS accuracy is evaluated in rather simple scenarios (e.g., no
traffic load). On top of that, the propagation delay asymmetry
potentially generated from different frame sizes and MCS can
significantly harm CS performance of the solutions [13], [24].
Although these solutions provide important insights for PTP
implementation in wireless network, we believe they are not
adequate in terms of stability for industrial applications [25].

B. PTP with hardware timestamping

HW TS is realized at or close to the physical layer of
a radio (see Fig. 2). The approach enables PTP to achieve
better CS performance than SW TS based PTP in general over
WLAN. A HW TS at the physical layer for a modified PTP
has been prototyped over IEEE 802.11b WLAN [17]. In order
to achieve TS, the work has implemented a dedicated Adder
Based Clock (ABC) in FPGA. In the prototype, a customized
version of the PTP protocol is used in which, instead of using
Sync and FollowUp messages, the synchronization data from
master to slave is embedded within beacons. Experimental
results show that the solution has the virtues of high CS
accuracy; i.e., mean CS accuracy is 0.24 ns with standard
deviation of 0.53 ns. We believe apart from the apparent
benefit of HW TS, the solution’s high CS accuracy is also
thanks to the frequent beacon broadcast (i.e. typically 10
times a second). The results however do not incorporate any
information regarding the impact of traffic load on the CS
accuracy nor its performance over multi-hop networks. An-
other HW TS based PTP solution is analyzed over WLAN by
using an embedded processor and Programmable Logic Device
(PLD) in [16]. To realize HW TS, they have implemented
4 hardware modules including two 64 bits counters on the
PLD. The solution gives a mean CS accuracy of 1.1 ns with
a standard deviation of 1.76 ns, but it uses a custom Media
Access Control (MAC) mechanism, which is not compatible
with the IEEE 802.11 standard. The CS performance of all
these HW TS based solutions is quantified over a single-
hop wireless network and none of them have mentioned their
solution’s performance when non-PTP traffic is present in the
network. Further, all these works have utilized a dedicated HW
clock to realize TS. In other words, an additional HW clock
is required to enable PTP in commercial products, making

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

them less economical and no more compliant with the 802.11
standard.

C. Contribution of this paper

The key characteristics and benefits of the PTP solution
presented in this work are summarized as follows:

1) The presented PTP solution supports HW assisted TS,
making it more accurate than SW TS based PTP in terms
of CS accuracy.

2) Unlike the previous HW TS based PTP solutions which
use additional HW clocks for HW TS, this work is more
economical in terms of hardware footprint, as it uses the
existing TSF clock for HW TS.

3) Existing TSF based solutions [26], [27] only perform
clock offset correction during the CS process. The CS
accuracy however requires both clock offset and skew
correction [28]. The CS process of the HW clock to be
synchronized (Cs) with the master clock (Cm) can be
modeled by Eq. 5

Cs(t) = S × Cm(t) + b (5)

where S and b represent skew and offset of HW clock
[29]. Clock offset is the relative time difference between
master and slave, whereas clock skew is the relative
difference in clock frequency between the master and
slave clocks. It implies that the clock skew between
master and slave remains uncorrected in the existing TSF
based solutions. As a result, the clocks quickly diverge
after each correction. IEEE 802.11 [30] has specified
±20 ppm frequency skew for WLAN chipsets, resulting
in CS errors of up to ±40 µs per sec if only clock
offset correction is applied once per second. Thus, we
also introduce skew correction capability in conjunction
with clock offset correction in a TSF clock by slightly
modifying the existing TSF block of openwifi in FPGA.

4) Our solution has the potential to further enhance the CS
accuracy of the existing TSF based CS protocols (e.g.,
TA mechanism in IEEE 802.11 standard), due to the
introduction of clock skew correction in TSF clock.

5) Our solution is based on an open source radio chip
design, making it more convenient for users to adopt
the approach.

6) Our solution is full stack and Linux compatible, using
existing PTP software and Linux kernel support.

7) Unlike existing work, we have quantified the perfor-
mance of our prototype in 90 percentile of absolute CS
error to validate the compliance of our solution with the
Wi-Fi TimeSync certificate.

8) Lastly, to examine the adequacy of our solution for in-
dustrial applications, the CS performance of the solution
is investigated over a single-hop wireless network as
well as a multi-hop hybrid network, coexisting with a
large amount of non-PTP traffic.

III. THE PROPOSED SOLUTION

Fig. 3 represents the block diagram of our proposed ar-
chitecture for PTP design over IEEE 802.11 WLAN. The

Fig. 3. Block diagram of our proposed PTP design over WLAN.

architecture is prototyped on a System on Chip (SoC) where
the openwifi, an open-source chip design of IEEE 802.11
WLAN, is running. Additionally, PTP software stack and PTP
HW clock are realized on embedded processor and FPGA parts
of the SoC, respectively. To implement the PTP software stack,
we have employed the existing linuxptp software [31] as a
userspace application. Linuxptp software, which is the Linux
based PTP implementation for wired (Ethernet) networks,
relies on certain system calls to determine a device’s TS
capability (i.e., SW or HW TS). These calls are unfortunately
not accessible for a Wi-Fi card driver without Linux kernel
modifications, hence changes are made in the application to
bypass the check without hurting the Linuxptp software’s
compliance with PTP standard. We have further modified
the radio device driver, making it able to interface with the
PTP HW clock. Lastly, the necessary changes are made in
the existing TSF hardware to use it as the PTP HW clock.
These changes enable TSF to perform both clock offset and
skew corrections, where clock offset means the time difference
between master and slave, and clock skew is the frequency
difference between the master and slave’s clocks. In short, the
proposed PTP architecture can be generalised into two crucial
extensions: (1) design a wireless PTP software stack, and (2)
modification of the existing TSF clock in HW to allow PTP
HW TS. These two extensions are detailed in this section.

A. Design of the PTP software stack

A generalized diagram containing the main components
used in the PTP software stack is shown in Fig. 4. There
is an existing PTP clock infrastructure, also referred to as the
PTP Hardware Clock (PHC) subsystem, in the kernel of Linux
OS. The PHC subsystem offers Application Programming
Interfaces (APIs) for both userspace applications as well as
for device drivers to control the HW clock. Introducing PTP
clock support for an WLAN interface requires the integration
of these APIs together with TS at both userspace level and
device driver.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 4. A generalized diagram containing the main components used in the PTP software stack.

In the design, we have used linuxptp as the software stack
of PTP clock at userspace level. Linuxptp uses the APIs of
the PHC subsystem in combination with SO TIMESTAMPING
socket option to regulate the HW clock. SO TIMESTAMPING
is a socket attribute used by recvmsg() at userspace level
to generate timestamps on transmission, reception or both.
The socket attribute supports both HW and SW TS. To run
linuxptp over WLAN, it is essential that the radio driver has
support for the PHC interface as well as SO TIMESTAMPING
socket option. To this end, the following steps are taken to run
linuxptp over openwifi in the radio driver:

1) linuxptp uses SIOCSHWTSTAMP in an ioctl system
call to configure which outgoing and incoming packets
should be timestamped. The selection of the packets is
necessary, because not all the packets on the network
stack require HW TS. For instance, there is no need
for TS in non-PTP packets. The corresponding callback
function implemented in our driver is 80211hwts set
(see point 1 in Fig. 4). SIOCGHWTSTAMP is an
ioctl system call used to read the already configured
packet settings and its callback function in the driver
is 80211hwts get. 80211hwts info is another callback
function which returns the TS capabilities of a Network
Interface Card (NIC), when ethtool2 -T sdr0 command
is executed at userspace level, where sdr0 represents the
Wi-Fi interface formed by openwifi as recognized by the
Linux OS.

2ethtool command: https://linux.die.net/man/8/ethtool

2) After configuring the HW timestamp settings for PTP
packets, the next step is to enable the HW TS in the
radio driver. sk buff is a data structure in the Linux
networking stack designed to handle the packet that has
been received or is about to be transmitted. The structure
allows the HW timestamps to be stored in the field
skb shared hwtstamps optionally. A device driver is re-
sponsible for reading the timestamps from hardware reg-
isters and writing them into the skb shared hwtstamps.
The function callback where the radio driver copies
TS value from HW register to sk buff upon packet
transmission is shown in Fig. 4 (see the point 2 at the
radio drivel level).

3) The last step is to expose the HW clock to linuxptp,
so that it can regulate the clock from the userspace
level. The ptp clock is a structure representing the PTP
clock in a radio driver. It provides an abstraction on top
of the HW clock and allows the userspace application
to get, set and adjust the HW clock automatically. An
example of the code snippet with the key functionalities
of ptp clock is shown in Fig. 4 (see point 3 at the radio
driver level).
The 80211 ptp adjtime and 80211 ptp adjfreq are the
most important callback functions, among others. The
former function performs clock offset correction and the
latter does skew correction of PTP HW clock. The clock
skew correction value is calculated by using Eq. 6.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 5. A diagram of the hardware components added (highlighted in green) to assist with hardware timestamping.

Sc =

(
109

Fr × ppb

)
× 106 (6)

Where, linuxptp computes the ppb (part per billion)
value based on the received HW timestamps, and sends
it to the radio driver. Our radio driver uses this value to
calculate the Sc (skew correction) value, which corre-
sponds to the duration in microseconds that the clock is
adjusted periodically based on the ppb value. Fr denotes
the desired frequency in Hz of PTP HW clock. Let’s
say the quantified ppb value is 78,096 and Fr value is
1 MHz, then the actual frequency of PTP HW clock
becomes 1.000078096 MHz. The calculated Sc value by
using Eq. 6 is 12,805 µs, which is later used by PTP HW
clock (see Fig.5) to correct clock skew (further explained
in the next section). Lastly, the ptp clock is exposed
as a character device (/dev/ptpX) to userspace, where
linuxptp directly uses it to discipline the HW clock.

B. Design the assisting HW for PTP HW TS

As shown in Fig. 5, the HW unit used in our design
primarily consists of (1) PTP HW clock representing real time
local HW clock, (2) TimeStamp Unit (TSU) responsible for
generating HW TS upon detection of reception or transmission
of frame preamble, and (3) IEEE 802.11 datapath employed
for sending and receiving PTP packets.

There are two types of interfaces used on the SoC to transfer
data between the processor and the openwifi hardware, both
belong to the 4th revision of Advanced eXtensible Interface
(AXI4) [32]. One type is used for register configurations (i.e.
AXI4 Lite); whereas the other is for high speed and high
volume data transfer (i.e., AXI4 Stream), being the interactions
with Direct Memory Access (DMA) for transmitting and
receiving packets in the 802.11 datapath of openwifi. More
specifically for PTP realization, the relevant registers (e.g.,
Offset Correction Register, Skew Correction Register) are
configured with AXI4 Lite interface, while the PTP messages
generated by the PTP software stack are sent/received via
AXI4 Stream interface.

Instead of utilizing a dedicated clock, PTP HW clock is
realized by leveraging the existing TSF clock. While HW CS
demands both clock offset and skew correction, the default
TSF implementation is only able to do offset correction.
Thus, we have modified the TSF HW making it capable of
performing skew correction as well (see colored blocks in
Fig. 5). The radio driver calculates the upper limit (i.e. the Sc
value) for Skew Correction Counter (SCC) using Eq. 6, and
loads the calculated value into the Skew Correction Register
(SCR) via AXI4 Lite interface [32]. SCC increments with the
TSF clock at 1MHz operating frequency. Upon reaching the
Sc value, SCC overflows and performs the skew correction
of the TSF clock. In normal situations, the TSF counter is
incremented by one after each 1 µs according to the desired
rate of the local oscillator. Upon skew correction, the TSF
counter is either incremented by two or zero depending upon
the sign of the carry bit. For instance, SCC performs skew
correction after each 12,805 counts in the example given in
the previous section.

Lastly, the TSU is composed of a controller and a First-
In, First-Out (FIFO). The controller is in charge of executing
TS upon either frame preamble transmission (or reception),
and storing it into the FIFO. The radio driver later reads and
copies these TS values into sk buff by calling 80211hwts tx()
function (see point 2 at the radio drivel level in Fig. 5). The
radio driver also performs a similar action for the reception
process. For simplicity, this is not shown in Fig. 5. The radio
driver performs all these actions inside the Interrupt Service
Routine (ISR). Subsequently, the linuxptp calls recvmsg()
function callback to read these TS values and performs CS.

IV. RESULTS AND DISCUSSIONS

In this section, first, the experimental setup used to eval-
uate the CS performance of our design is presented. Then,
the CS performance of our design is analysed over both
a single-hop network and multi-hop network across wired
and wireless network segments. The CS performance of our
design is quantified in terms of CS mean value (µ), standard
deviation (σ) and the 90th percentile of the absolute CS
error (P90). These values are calculated by Eq. 1, Eq. 2,
and Eq. 3, respectively. Lastly, the CS performance of our

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 6. Experimental setup of the single-hop network used to measure the performance of our proposed PTP over WLAN.

design is compared against the performance of existing CS
solutions. Since the existing solutions in literature only provide
information regarding µ and σ values, we have estimated P90

value with the help of Eq. 7. We assume that the samples in a
CS error measurement follow a Gaussian distribution, which
implies that its absolute values will follow a folded Gaussian
distribution, whose cumulative distribution function is given
in Eq. 7.

f(Cerr) =
1

2

[
erf

(
Cerr + µ

σ
√
2

)
+ erf

(
Cerr − µ
σ
√
2

)]
(7)

erf

(
Cerr ± µ
σ
√
2

)
=

2√
π

∫ (
Cerr±µ
σ
√

2

)
0

e−t
2

dt (8)

where f (Cerr) reflects the estimated percentile of the absolute
CS error at |Cerr|th point. In other words, the |Cerr| value
corresponds to the estimated P90 when f (Cerr) is equal to
0.9.

A. Experimental Setup for a Single-Hop Network

To measure the performance of our proposed PTP solution
with HW TS over single-hop WLAN, a wireless network
between two openwifi Software Defined Radio (SDR) boards
has been established, as illustrated in Fig. 6. The WLAN is
set up in infrastructure mode, where one of the SDRs acts
as the Access Point (AP) and the other behaves as a client.
Due to the lack of power amplifier in the used RF frontend, the
SDRs are placed in close proximity (i.e., the measured transmit
power of the used SDR is -15 dBm). The SDR used as the
AP in the particular experiment is composed of ZC706 [33],
and FMCOMMS2 [34], an analog RF frontend. The SDR used
as the client consists of Zedboard [35], a development board
for Zynq 7000 SoC [36], and FMCOMMS2. Both ZC706 and
Zedboard are using Xilinx Zynq 7000 SoC, the main difference
is the FPGA size and the peripherals on the boards. We do
choose two different types of FPGA boards intentionally, as
oscillators on different boards tend to have bigger differences,
hence the clocks based on different boards are more challeng-
ing to synchronize. The Zynq 7000 SoC further comprises
Programmable Logic (PL) (FPGA) and Processing Subsystem
(PS) (ARM Cortex-A9). The PTP hardware unit along with
the low MAC and physical layers of openwifi are implemented
in the PL part, while high MAC and other layers of network
stacks of openwifi [37] and PTP software stack are running on
the embedded PS part. The operating system running on the
PS is Linux with kernel version 4.14. In the particular setup,

TABLE I
THE MEASURED CLOCK SYNCHRONIZATION PERFORMANCE OF OUR

PROPOSED PTP OVER SINGLE-HOP WLAN.

Parameters No load TCP load UDP load
µ -0.018 µs 0.007 µs 0.006 µs
σ 0.840 µs 0.824 µs 0.919 µs
P90 1.25 µs 1.36 µs 1.38 µs

the openwifi is configured in IEEE 802.11a mode operating
in 5 GHz frequency band with 20MHz channel bandwidth.
The Modulation and Coding Scheme (MCS) values for IEEE
802.11a are dynamically adapted up to 7 by Linux mac80211
minstrel rate control algorithm.

The AP acts as the PTP master and the client is the PTP
slave. In our setup, PTP is configured in E2E mode. Thus,
the master and slave periodically exchange Sync, FollowUp,
DelayReq, and DelayResp messages during the CS process.
These messages in the linuxptp are transmitted or received
using UDP/IP via sockets API (see Fig. 3). Note that the PTP
messages in our setup are transported over UDP and IPv4. The
CS accuracy of our prototype is measured by a software report
generated in linuxptp. The report includes master offset (i.e.,
the measured CS error in nanosecond), frequency offset (i.e.,
the measured clock skew between the PTP master and slave
clocks in ppb). The linuxptp v2.0 is used in the experiment
and is configured to give updates on these metrics once per
second. The report is fed to the post processing unit indicated
in Fig. 6, where master offset and frequency offset samples
are extracted from the report and the CS performance metrics
(i.e. µ, σ and P90) are derived.

B. Experimental Evaluation over single-hop network

Before evaluating the CS accuracy over the single-hop
WLAN, we first evaluate the Convergence Time (CT) of
our solution. CT is the time acquired by PTP to reach its
stable phase. Short CT is always desired, since time critical
applications can run only when CS error is stable and small
enough.

1) Convergence Time: We have quantified the CT of our
proposed PTP solution in terms of CS error and frequency
offset under two different experimental setups. In the first
setup, we have used different SDR boards (i.e., ZC706 board
acts as master and Zedboard functions as slave as depicted in
Fig. 6). In the second setup, ZC706 board is replaced with
another Zedboard. The main reason behind using different

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 7. Convergence time of the proposed PTP solution over WLAN in terms of (a) clock synchronization error and (b) frequency offset.

Fig. 8. (a) Histogram of the clock synchronization error, and (b) the Cumulative Distribution Function (CDF) of the absolute clock synchronization error of
our proposed PTP solution over single-hop WLAN when no traffic load, UDP traffic and TCP traffic is applied.

Fig. 9. Experimental setup used to measure the performance of our proposed
PTP over multi-hop hybrid network.

HW setups is to verify whether the CT performance of our
proposed PTP is affected by the HW formations.

Fig. 7 displays the CT of our proposed PTP solution over
WLAN under the two different HW setups. We have defined
CT as the time when CS error or frequency offset reaches
a stable range. The stable range can be positive or negative
depending on whether the slave clock is leading or lagging
behind the master clock. Fig. 7-a illustrates the CT in terms
of CS error. It can be observed from Fig. 7-a that the two
curves of CS error for two different HW setups converge to
almost the same stable range after approximately 4 sec (i.e.,
CT value). The stable range of CS error for the first setup
(see hardware setup 1 in Fig. 7-a) is ±0.81 µs with a µ value
of 0.071 µs. Similarly, the stable range of CS error for the
second setup (see hardware setup 2 in Fig. 7-a) is ±1.03 µs
with a µ value of -0.04 µs. To highlight the transition to the
stable phase of PTP, a zoomed-in trace is also shown in Fig.
7-a.

Similarly, the report generated by linuxptp also contains the
frequency offset of the slave clock relative to master. The
frequency offset can also be used to compute the CT of PTP,
as displayed in Fig. 7-b. Unlike the convergence curves of CS

error (see Fig. 7-a), the curves of frequency offset for the two
different HW setups never converge to the same stable range.
This is because different HWs have crystal clocks with slightly
different frequency error. The stable range of frequency offset
for the first setup (see hardware setup 1 in Fig. 7-b) is ±675
ppb with a mean value of -2309 ppb. Similarly, the stable range
of the frequency offset for the second setup (see hardware
setup 2 in Fig. 7-b) is ±904 ppb with a mean value of
6809 ppb. Though the convergence curve of frequency offset
depends on the HW crystal clock, it gets stabilized during
the stable phase of PTP. As shown in Fig. 7-b, the CT value
measured in terms of frequency offset is approximately 6 sec.
Apparently, this value is higher than the CT value estimated
based on the CS error. During the start up process, linuxptp
sequentially travels through three different clock servo states:
unlocked (s0), clock-step (s1), and locked (s2). The linuxptp
performs only clock offset correction during s1 state. The
frequency offset correction begins when it enters into s2 state.
Due to this, CT value when estimated based on frequency
offset is relatively high. Thus, we can draw a conclusion from
the experimental results that the CT of the proposed PTP can
be measured by using CS error or frequency offset and it takes
approximately 4 to 6 master-slave interactions on the typical
SDR platform with crystal oscillator frequency error of ±50
ppm [33] to get stablized. The CT value can be enhanced by
shortening the interaction interval between master-slave in a
wireless network.

2) Clock Synchronization Accuracy: A typical real time
wireless network in an industrial environment contains back-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 10. Cumulative Distribution Function (CDF) of absolute clock synchronization error of our proposed PTP over multi-hop hybrid network when no traffic
load, UDP traffic and TCP traffic is applied.

TABLE II
THE MEASURED CLOCK SYNCHRONIZATION PERFORMANCE OF OUR PROPOSED PTP WITHIN THE MULTI-HOP HYBRID NETWORK.

Description No load TCP load UDP load
µ (µs) σ (µs) P90 (µs) µ (µs) σ (µs) P90 (µs) µ (µs) σ (µs) P90 (µs)

AP to GM 0.001 1.151 1.78 0.011 1.233 1.85 0.001 1.310 1.79
Client A to AP 0.003 1.492 2.23 0.002 2.249 2.38 -0.002 2.063 2.37
Client B to AP 0.002 1.375 2.50 -0.004 1.606 2.98 0.003 1.612 3.12
Client A to GM 0.004 2.643 4.01 0.013 3.482 4.23 -0.001 3.373 4.16
Client B to GM 0.003 2.526 4.28 0.007 2.839 4.83 0.004 2.922 4.91

ground network load in addition to PTP messages which can
adversely affect the CS performance. For instance, network
load could cause network congestion resulting in delays or
drops of PTP packets. To this end, the PTP CS performance is
quantified when no network load is present between the SDRs
to show the optimum performance, and also when network
load is present between the SDRs to show the performance
under more practical conditions. Note that we have measured
µ, σ and P90 of CS performance by using Eq. 1, Eq. 2, and
Eq. 3, respectively, for single-hop network.

Network load defines how much other traffic together with
PTP messages is transferred over the WLAN. The HW setup
displayed in Fig. 6 is leveraged to quantify the CS error as we
have already learnt from the previous section that the error
is HW independent. Note that the experimental evaluation
uses results of the stable phase of PTP. In other words,
reports generated during the CT of PTP are ignored. The
measurements last for 20 minutes with the CS error stamped
once per second.

The CS errors quantified under different network loads are
shown in Fig. 8 and Table. I. As seen from Fig. 8, the
P90 is 1.25 µs with σ of 0.84 µs when no traffic load is
applied. For network load settings, the iperf3 software is used
to generate traffic between the SDRs. First a TCP iperf stream
and then a UDP stream is enabled from the client under test
to the AP in conjunction with PTP message exchanges. Since
TCP is by design bi-directional, i.e. using TCP of iperf will
automatically find the maximum throughput (i.e. 16.4 Mb/s
in this experiment) between the client and AP, it shows that
we can push the limit of traffic load between the SDRs while
keeping PTP running stable. The P90 rises to 1.36 µs with σ
of 0.82 µs while running the TCP traffic (see Fig. 8). Lastly, as
UDP is by design unidirectional, we have applied the average
throughput found in TCP as the target throughput in UDP

3Iperf https://iperf.fr/

stream. The measurement shows that the design can also run
with unidirectional traffic load without any feedback for flow
control. The P90 jumps to 1.38 µs with σ of 0.92 µs when
16.4 Mb/s UDP iperf is enabled. It can be seen from the
results that the impact of network load on the CS error is
almost negligible; i.e., the P90 only increases by 0.13 µs and
0.11 µs with UDP and TCP traffic load applied, respectively,
when compared against the case when no load is applied.
Last but not least, experimental results have verified that our
solution is capable of providing a P90 much better than 5.5
µs, which is required for Wi-Fi TimeSync [22] certification, in
both optimum and more practical scenarios.

C. Experimental evaluation over multi-hop hybrid network
The experimental setup used to measure the CS performance

of our solution over a multi-hop hybrid network is deployed
in the w-iLab.t testbed [38]. Fig. 9 displays the high level
overview of this setup. A Time Sensitive Network (TSN) ca-
pable switch [39] is configured as PTP GM. The openwifi AP
composed of Zynq UltraScale+ MPSoC ZCU102 Evaluation
Kit [40] and FMCOMMS2 behaves as a BC. The AP has
two PTP HW clocks. The HW clock attached to Ethernet
interface acts as a slave clock to the TSN switch and the
HW clock attached to the openwifi interface functions as the
master clock to the wireless network segment. Within the AP,
the openwifi interface’s PTP HW clock is synchronized against
the Ethernet’s PTP HW clock, using phc2sys command offered
in the linuxptp software. The wireless network in the multi-
hop hybrid network includes two Wi-Fi clients. Each openwifi
client is made up of a ZC706 and an FMCOMMS2 board. The
HW clocks of the two clients in the wireless network are slaves
to the AP’s openwifi PTP HW clock. The distance between
each client and AP is approximately 3 meters, determined by
the available mounting devices in the testbed. Since the RF
frontend used in AP and clients lacks built-in power amplifier,
an external power amplifier is connected at the transmitter

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE III
PERFORMANCE COMPARISON WITH EXISTING CLOCK SYNCHRONIZATION SOLUTIONS OF WLAN IN THE LITERATURE.

HW
TS

Extra
HW
clock

Sync
inte-
rval
(sec)

Clock synchronization performance over single-hop
network

Clock synchronization performance over multi-hop
wired-wireless hybrid network

No load Network load No load Network load
µ σ P90 µ σ P90 µ σ P90 µ σ P90

PTP based clock synchronization solutions
Our

√
× 1.0 -018 ns 840 ns 1.25 µs 6.00 ns 919 ns 1.38 µs 4.0 ns 2.64 µs 4.01 µs -1.0 ns 3.4 µs 4.2 µs

[17]
√ √

0.1 0.24 ns 0.53 ns 1.00 ns NA NA NA NA NA NA NA NA NA
[16]

√ √
2.0 1.10 ns 1.76 ns 3.40 ns NA NA NA NA NA NA NA NA NA

[11] × × 2.0 -14.2 µs 27.7 µs 51.2 µs NA NA NA NA NA NA NA NA NA
[12] × × 1.0 6.60 µs 0.58 µs 7.34 µs NA NA NA NA NA NA NA NA NA
[16] × × 2.0 4.60 µs 1.58 µs 6.63 µs NA NA NA NA NA NA NA NA NA
[23] × × 1.0 NA NA NA NA NA NA -0.7 µs 0.64 µs 1.52 µs NA NA NA
[24] × × 1.0 109 ns 360 ns 0.62 µs 316 ns 1.26 µs 2.13 µs NA NA NA NA NA NA
non-PTP based clock synchronization solutions
[26] × × 1.0 37.5 ms 6.80 µs 37.6 ms NA NA NA NA NA NA NA NA NA
[29] × × 1.0 6.00 µs 341 ns 6.44 µs 21.0 µs 1.14 µs 22.5 µs NA NA NA NA NA NA

output of both AP and clients. The added amplifier boosts the
transmitter power by 18 dB, which gives sufficient power to
form connection between the clients and AP.

The duration of the measurements is set to 20 minutes with
the CS error stamped once per second. Similar to the single-
hop network experiment, the CS performance is also quantified
with both no network load and network load applied. For
the network load setting, first two TCP iperf streams are
simultaneously enabled from both Wi-Fi clients to the AP.
Then the TCP streams are replaced by UDP streams, with a
target throughput of 7 Mb/s on both clients. Note that 7 Mb/s
is the average throughput observed in the TCP measurement.

The µ, σ and P90 values between each hop within the multi-
hop hybrid network is shown in Table. II and Fig. 10. Like the
conclusions from the single-hop network, it can be observed
that the impact of network load on CS error between each
client and AP is almost negligible. However, the CS error
between each client and AP is relatively larger compared to
the single-hop network case with no network load applied.
In another word, we observed that the CS performance of
the wireless network degrades when the AP is configured
as a BC compared to the situation when the AP is acting
as the GM. Intuitively, the AP clock is varied periodically
when it is acting as a BC, making it more challenging for the
clients to synchronize, hence increasing the CS error of the
downstream network. However, even with the traffic load and
AP configured as a BC, the single hop CS error between AP
and client is still well within the 5.5 µs limit required by the
Wi-Fi Timesync certification.

D. Performance comparison of the proposed PTP with the
existing PTP solutions

A detailed CS performance comparison of the proposed
PTP design with the existing PTP and non-PTP based CS
solutions over WLAN is depicted in Table. III. The NA (i.e.,
Not Available) in Table. III corresponds to a metric which
is not available for a solution in the literature. The column
Sync interval indicates the time interval in seconds after which
the synchronization procedure (i.e., Sync,FollowUp message
exchange in case of PTP solution and Beacon broadcast in
case of non-PTP solutions) is repeated. For a fair comparison

of our validation, we have also estimated the P90 (see bold
values in Table. III) of the existing solutions using Eq. 7.

Generally, most solutions have not evaluated the impact of
traffic load, and neither the performance in a more complex
network topology. The exceptions are [23], [24], [29]. [24]
and [29] are the only solutions which provide the information
pertaining to the CS performance in the presence of network
load. Unlike our solution, it is shown that the CS performance
of these solutions is significantly degraded in the presence of
network load. That is, The CS error’s σ increases from 360
ns to 1.26 µs in [24] and from 341 ns to 1.14 µs in [29].
[23] is the only solution other than ours that has evaluated CS
performance in a network topology involving multi-hop with
wired network segment. The CS performance of this solution
is, apparently, better than ours in the absence of network load.
The work has however used SW TS in the wireless part of
the network and the performance of their work is not tested
in the presence of non-PTP background traffic. Though the
authors do mention that the solution is susceptible to non-PTP
background traffic due to SW TS. Further, due to SW TS, the
CS performance of all the above mentioned solutions is likely
to suffer from propagation delay asymmetry generated from
different frame sizes, modulation and coding scheme [13].

Purely looking at performance in a single hop network,
the HW TS based PTP solutions significantly outperform our
solution. This is mainly due to the TSF clock configured as
PTP HW clock in our validation has TS resolution of one
µs. Contrarily, the HW TS based solutions have utilized a
dedicated HW PTP clock having better clock resolution in
the range of ns. A secondary factor is the sync interval, [17]
performs synchronization every 100 ms instead of 1 second,
which improves the CS accuracy at the cost of traffic overhead.
Thus, improved clock resolution of TSF clock, or reduced sync
interval can enhance the CS performance of our design, which
are a part of our consideration for future exploration.

V. CONCLUSIONS

In this paper, a new approach for PTP with HW TS is
designed and verified over openwifi, an open-source IEEE
802.11 implementation on SDR. The linuxptp application and
PHC subsystem of Linux kernel are employed to realize the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

PTP software stack. Instead of adding a dedicated hardware
clock, the existing TSF hardware of openwifi is used as the
PTP HW clock. During the clock synchronization process,
the default implementation of TSF however can only perform
clock offset correction, leaving the clock skew uncorrected. We
have modified the TSF hardware, enabling it to conduct both
clock offset and skew correction. Thus, our approach allows
the Wi-Fi chip manufacturers to enable PTP functionalities in
their products with minimal hardware changes. It is shown
that the approach is able to achieve mean synchronization
accuracy of 0.018 µs, with standard deviation of 0.58 µs. The
90th percentile of the absolute CS error of our work is 1.25
µs, well below the 5.5 µs requirement of Wi-Fi TimeSync
certificate introduced by the Wi-Fi alliance. In addition, the
impact of traffic load in WLAN on the clock synchronization
accuracy is also investigated and proven to be insignificant.
Lastly, the performance of our approach is also tested on a
multi-hop hybrid network with more Wi-Fi stations and wired
network segment involved.

It is observed that the performance of our approach rela-
tively degrades in multi-hop network. A stable TSF clock with
high resolution can potentially enhance the performance of
our approach. To this end, we consider to improve the perfor-
mance by tuning the hardware clock at finer granularity (i.e.,
sub-microsecond level) without compromising the hardware
utilization in the future. Though our novel approach for clock
synchronization is validated on IEEE 802.11 standard, it is not
specific for this standard. In other words, the methodology to
support skew correction in an existing timer with support for
PTP software stack can be applied on any wired or wireless
standard incorporating embedded timer (e.g., 28 bits internal
timer in Bluetooth).

ACKNOWLEDGMENT

This research was funded by the Flemish FWO SBO
S003921N VERI-END.com (Verifiable and elastic end-to-end
communication infrastructures for private professional envi-
ronments) project and the Flemish Government under the ”On-
derzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
program.

REFERENCES

[1] O. Seijo, I. Val, J. A. Lopez-Fernandez, and M. Velez, “Ieee 1588 clock
synchronization performance over time-varying wireless channels,” in
2018 IEEE International Symposium on Precision Clock Synchronization
for Measurement, Control, and Communication (ISPCS). IEEE, 2018,
pp. 1–6.

[2] “Ieee standard for local and metropolitan area networks—timing and
synchronization for time-sensitive applications in bridged local area
networks, ieee 802.1as,” IEEE, 2007.

[3] B. Chen, Y.-P. Chen, J.-M. Xie, Z.-D. Zhou, and J.-M. Sa, “Control
methodologies in networked motion control systems,” in 2005 Interna-
tional Conference on Machine Learning and Cybernetics, vol. 2. IEEE,
2005, pp. 1088–1093.

[4] “1588-2008 - ieee standard for a precision clock synchronization proto-
col for networked measurement and control systems,” IEEE, 2008.

[5] R. Holler, T. Sauter, and N. Kero, “Embedded synutc and ieee 1588
clock synchronization for industrial ethernet,” in EFTA 2003. 2003
IEEE Conference on Emerging Technologies and Factory Automation.
Proceedings (Cat. No. 03TH8696), vol. 1. IEEE, 2003, pp. 422–426.

[6] G. Gaderer, R. Holler, T. Sauter, and H. Muhr, “Extending ieee 1588 to
fault tolerant clock synchronization,” in IEEE International Workshop
on Factory Communication Systems, 2004. Proceedings. IEEE, 2004,
pp. 353–357.

[7] Cip sync, an ethernet based commercial product compliant with
ieee 1588 standard. [Online]. Available: https://www.odva.org/
technology-standards/distinct-cip-services/cip-sync/

[8] J. Feld, “Profinet-scalable factory communication for all applications,”
in IEEE International Workshop on Factory Communication Systems,
2004. Proceedings. IEEE, 2004, pp. 33–38.

[9] G. Venkatesan, “Avnu alliance ® white paper wireless tsn – definitions
, use cases & standards roadmap,” 2020.

[10] “Ieee standard for local and metropolitan area networks–timing and
synchronization for time-sensitive applications,” IEEE Std 802.1AS-2020
(Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.

[11] W. Chen, J. Sun, L. Zhang, X. Liu, and L. Hong, “An implementation
of ieee 1588 protocol for ieee 802.11 wlan,” Wireless networks, vol. 21,
no. 6, pp. 2069–2085, 2015.

[12] A. Mahmood, G. Gaderer, H. Trsek, S. Schwalowsky, and N. Kerö,
“Towards high accuracy in ieee 802.11 based clock synchronization
using ptp,” in 2011 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication. IEEE,
2011, pp. 13–18.

[13] A. Mahmood, R. Exel, H. Trsek, and T. Sauter, “Clock synchronization
over ieee 802.11—a survey of methodologies and protocols,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 2, pp. 907–922,
2016.

[14] A. Mahmood, R. Exel, and T. Sauter, “Impact of hard-and software
timestamping on clock synchronization performance over ieee 802.11,”
in 2014 10th IEEE Workshop on Factory Communication Systems
(WFCS 2014). IEEE, 2014, pp. 1–8.

[15] T. Cooklev, J. C. Eidson, and A. Pakdaman, “An implementation of ieee
1588 over ieee 802.11 b for synchronization of wireless local area net-
work nodes,” IEEE Transactions on Instrumentation and Measurement,
vol. 56, no. 5, pp. 1632–1639, 2007.

[16] J. Kannisto, T. Vanhatupa, M. Hannikainen, and T. Hamalainen, “Soft-
ware and hardware prototypes of the ieee 1588 precision time protocol
on wireless lan,” in 2005 14th IEEE Workshop on Local & Metropolitan
Area Networks. IEEE, 2005, pp. 6–pp.

[17] R. Exel, “Clock synchronization in ieee 802.11 wireless lans using
physical layer timestamps,” in 2012 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication Proceedings. IEEE, 2012, pp. 1–6.

[18] Intel. wi-fi 6 ax200 module. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
product-briefs/wi-fi-6-ax200-module-brief.pdf

[19] Intel. wi-fi 6 ax201 module. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
product-briefs/wi-fi-6-ax201-module-brief.pdf

[20] J. Xianjun, L. Wei, and M. Michael. (2019) open-source ieee802.11/wi-
fi baseband chip/fpga design. [Online]. Available: https://github.com/
open-sdr/openwifi

[21] R. Cochran and C. Marinescu, “Design and implementation of a ptp
clock infrastructure for the linux kernel,” in 2010 IEEE International
Symposium on Precision Clock Synchronization for Measurement, Con-
trol and Communication. IEEE, 2010, pp. 116–121.

[22] “Wi-fi certified timesync technology overview,” Wi-Fi Alliance, 2017.
[23] A. Mahmood and F. Ring, “Clock synchronization for ieee 802.11 based

wired-wireless hybrid networks using ptp,” in 2012 IEEE International
Symposium on Precision Clock Synchronization for Measurement, Con-
trol and Communication Proceedings, 2012, pp. 1–6.

[24] A. Mahmood, R. Exel, and T. Sauter, “Delay and jitter characterization
for software-based clock synchronization over wlan using ptp,” IEEE
Transactions on industrial informatics, vol. 10, no. 2, pp. 1198–1206,
2014.

[25] D. Cavalcanti, J. Perez-Ramirez, M. M. Rashid, J. Fang, M. Galeev,
and K. B. Stanton, “Extending accurate time distribution and timeliness
capabilities over the air to enable future wireless industrial automation
systems,” Proceedings of the IEEE, vol. 107, no. 6, pp. 1132–1152,
2019.

[26] A. Mahmood, G. Gaderer, and P. Loschmidt, “Software support for
clock synchronization over ieee 802.11 wireless lan with open source
drivers,” in 2010 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication. IEEE,
2010, pp. 61–66.

[27] A. Mahmood, R. Exel, and T. Bigler, “On clock synchronization over
wireless lan using timing advertisement mechanism and tsf timers,” in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

2014 IEEE International Symposium on Precision Clock Synchronization
for Measurement, Control, and Communication (ISPCS). IEEE, 2014,
pp. 42–46.

[28] H. Puttnies, P. Danielis, A. R. Sharif, and D. Timmermann, “Estimators
for time synchronization—survey, analysis, and outlook,” IoT, vol. 1,
no. 2, pp. 398–435, 2020.

[29] A. Mahmood, R. Exel, and T. Sauter, “Performance of ieee 802.11’s
timing advertisement against synctsf for wireless clock synchronization,”
IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp. 370–
379, 2016.

[30] “Ieee standard for information technology—telecommunications and
information exchange between systems local and metropolitan area
networks—specific requirements - part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications, ieee 802.1as,”
IEEE, 2016.

[31] R. Cochran et al. (2015) The linux ptp project. [Online]. Available:
http://linuxptp.sourceforge.net

[32] Xilinx. amba axi4 interface protocol. [Online]. Available: https:
//www.xilinx.com/products/intellectual-property/axi.html

[33] Xilinx. zc706, an evaluation kit for zynq-7000 soc. [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

[34] Analog devices. user guide of ad-fmcomms2-ebz an fmc board for
the ad9361. [Online]. Available: https://wiki.analog.com/resources/eval/
user-guides/adfmcomms2-ebz

[35] Xilinx. zedboard, a development board for zynq-7000 soc. [Online].
Available: https://www.xilinx.com/products/boards-and-kits/1-8dyf-11.
html

[36] Xilinx. an overview of zynq-7000 soc data sheet. [Online].
Available: https://www.xilinx.com/support/documentation/data sheets/
ds190-Zynq-7000-Overview

[37] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, “openwifi: a
free and open-source ieee802. 11 sdr implementation on soc,” in 2020
IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE,
2020, pp. 1–2.

[38] S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, and P. De-
meester, “The w-ilab. t testbed,” in International Conference on Testbeds
and Research Infrastructures. Springer, 2010, pp. 145–154.

[39] Time-sensitive networking solution for industrial
iot. [Online]. Available: https://www.nxp.com/design/
designs/time-sensitive-networking-solution-for-industrial-iot:
LS1021A-TSN-RD

[40] Xilinx.zcu102, an evaluation kit of zynq® ultrascale+™ mpsoc.
[Online]. Available: https://www.xilinx.com/products/boards-and-kits/
ek-u1-zcu102-g.html

Muhammad Aslam was born in Bahawalpur, Pak-
istan, in 1990. He received the B.Sc. degree in
electronics engineering from International Islamic
University, Islamabad, Pakistan, in 2014, and the
M.S. degree in electronics and telecommunication
engineering from the University of Kocaeli, Turkey,
in 2017. He is currently pursuing the Ph.D. degree
with the IDLab, a core research group of IMEC with
research activities embedded in Ghent University,
Belgium. His current research interests include wire-
less communication standards, video coding/motion

estimation, and their real-time implementation on SDR platforms.

Wei Liu Wei Liu was born in China in 1986. She
received the master’s degree in electronic engineer-
ing from the University of Leuven, Campus GroepT,
in 2010, and the Ph.D. degree from the IDLab, a
core research group of IMEC with research activities
embedded in Ghent University and the University
of Antwerp, in 2016. During her doctoral education,
she participated in multiple research projects, she
became familiar with several software-defined radio
platforms, and gained experiences in wireless testbed
operations. She is a Post-Doctoral Researcher with

Ghent University. Her research is conducted in the field of cognitive radio,
focusing on spectrum analysis and interference prevention.

Xianjun Jiao Xianjun Jiao received his bachelor
degree in Electrical Engineering from Nankai uni-
versity in 2001 and Ph.D degree on communications
and information system from Peking University in
2006. After his studies, he worked in industrial
research institutes and product teams in the domain
of wireless technology, such as Radio System Lab
of Nokia Research Center(senior researcher), de-
vices department of Microsoft (senior researcher)
and Wireless Software Engineering department of
Apple (RF software engineer). In 2016, he joined

IDLab, a core research group of imec with research activities embedded
in Ghent University and University of Antwerp. He is working as postdoc
researcher at Ghent University on flexible real-time SDR platform. His
main interests are SDR and parallel/heterogeneous computation in wireless
communications. On his research track, 20+ international patents and papers
have been authored/published.

Jetmir Haxhibeqiri received the Masters degree in
Engineering (information technology and computer
engineering) from RWTH Aachen University, Ger-
many (2013). In 2019, he obtained a PhD in En-
gineering Computer Science from Ghent University
with his research on flexible and scalable wireless
communication solutions for industrial warehouses
and logistics applications. Currently he is a post-
doc researcher in the Internet Technology and Data
Science Lab (IDLab) of Ghent University and imec.
His current research interests include wireless com-

munications technologies (IEEE 802.11, IEEE 802.15.4e, LoRa) and their
application, IoT, wireless time sensitive networking, in-band network moni-
toring and wireless network management.

Gilson Miranda Jr. holds B.Sc. and M.Sc. degrees
in Computer Science from Federal University of
Lavras (UFLA), Brazil. In 2017 started his PhD with
the Federal University of Minas Gerais (UFMG),
Brazil, and is now pursuing a Joint PhD with Uni-
versity of Antwerp, Belgium, where he is carrying
his research with IDLab. His main research interests
are programmable networks, wireless networks, and
machine learning applied to network management.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Jeroen Hoebeke received the Masters degree in
Engineering Computer Science from Ghent Univer-
sity in 2002. In 2007, he obtained a PhD in En-
gineering Computer Science from Ghent University
with his research on adaptive ad hoc routing and
Virtual Private Ad Hoc Networks. Current, he is an
associate professor in the Internet Technology and
Data Science Lab of Ghent University and imec. He
is conducting and coordinating research on wireless
(IoT) connectivity, embedded communication stacks,
deterministic wireless communication and wireless

network management. He is author or co-author of more than 150 publications
in international journals or conference proceedings.

Johann Marquez-Barja is a Professor at Univer-
sity of Antwerp, as well as a Professor in IMEC,
Belgium. He is leading the Wireless Cluster at ID-
Lab/imec Antwerp. He was and is involved in several
European research projects with leading roles. He
is a member of ACM, and a Senior member of
the IEEE Communications Society, IEEE Vehicular
Technology Society, and IEEE Education Society
where he participates in the board of the Standards
Committee. His main research interests are: 5G
advanced architectures including edge computing;

flexible and programmable future end-to-end networks; IoT communications
and applications. He is also interested in vehicular communications, mobility,
and smart cities deployments. Prof. Marquez-Barja is co-leading the Citylab
Smart City testbed, part of the City of Things programme, and the SmartHigh-
way testbed, both located in Antwerp, Belgium. He has given several keynotes
and invited talks in different major events, as well as received 30 awards in
his career so far, and co-authored more than 180 published works including
publications, editorials, and books. He is also serving as Editor and Guest
editor for different International Journals, as well as participating in several
Technical Programme and Organizing Committees for several worldwide
conferences/congresses.

Ingrid Moerman received her degree in Electrical
Engineering (1987) and the Ph.D. degree (1992)
from the Ghent University, where she became a part-
time professor in 2000. She is a staff member at
IDLab, a core research group of imec with research
activities embedded in Ghent University and Univer-
sity of Antwerp. Ingrid Moerman is coordinating the
research activities on mobile and wireless network-
ing at Ghent University, where she is leading a re-
search team of more than 30 members. Ingrid Moer-
man is also Program Manager of the ’Deterministic

Networking’ track at imec and in this role she coordinates research activities
on end-to-end wired/wireless networking solutions driven by time-critical
applications that have to meet strict QoS requirements in terms of throughput,
latency bounds and dependability in smart application areas like Industry 4.0,
vehicular networks and professional entertainment. Her main research interests
include cooperative and intelligent radio networks, real-time software defined
radio, time-sensitive networks, dynamic spectrum sharing, coexistence across
heterogeneous wireless networks, vehicular networks, open-source prototyp-
ing platforms, software tools for programmable networks, next generation
wireless networks (5G/6G/. . .), and experimentally supported research. Ingrid
Moerman has a longstanding experience in running and coordinating national
and EU research funded projects. At the international level, Ingrid Moerman
was leading team SCATTER, consisting of researchers from IMEC-IDLab and
Rutgers University (US), in the DARPA Spectrum Collaboration Challenge
(SC2). The double prize winning SCATTER team was one of the 10 finalists
at the DARPA SC2 championship event organized at Mobile World Congress
in LA (October 2019).

