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Abstract—This letter proposes a multi-stream selection frame-
work for Cell-Free Multiple-Input Multiple-Output (CF-MIMO)
networks. Partially coherent transmission has been considered
by clustering Access Points (APs) into phase-aligned clusters to
address the challenges of phase misalignment and inter-cluster
interference. A novel stream selection algorithm is developed
to dynamically allocate multiple streams to each multi-antenna
User Equipment (UE), ensuring that the system optimizes the
sum rate while minimizing inter-cluster and inter-stream in-
terference. Numerical results validate the effectiveness of the
proposed method in enhancing spectral efficiency and fairness
in distributed CF-MIMO networks.

Keywords—CF-MIMO, stream selection, coherent and non-
coherent transmissions, and interference mitigation.

I. INTRODUCTION

The deployment of CF-MIMO has emerged as a key
enabler for next-generation wireless networks, offering sub-
stantial improvements in spectral efficiency, energy efficiency,
and uniform user coverage by eliminating cell boundaries [1].
In CF-MIMO networks, a large number of geographically
distributed APs collaboratively serve UEs on the same time-
frequency resources, achieving high data rates through coher-
ent transmission [2], [3]. However, practical limitations such
as hardware imperfections, synchronization errors, and varying
propagation delays introduce phase misalignment among APs,
significantly impacting the effectiveness of coherent operation.
Specifically, these factors hinder accurate Channel State Infor-
mation (CSI) acquisition and disrupt phase alignment, leading
to severe degradation in the achievable rate of the network.

To address the challenges of phase misalignment and
asynchronous reception, recent studies have proposed a mixed
coherent and non-coherent transmission approach [4]. Since
clustering APs within a small area enables coherent transmis-
sion [2], APs are grouped into phase-aligned clusters, where
those within the same cluster perform coherent transmission,
while transmission across clusters remains non-coherent. Such
a hybrid strategy mitigates performance degradation caused by
asynchronous reception by balancing the benefits of coherent
transmission within clusters with the flexibility of non-coherent
transmission between them.

Most state-of-the-art solutions [5]–[7] assume UEs are
equipped with a single antenna in CF-MIMO networks, which
limits their applicability in next-generation networks, where
multi-antenna UEs are becoming increasingly common. When
UEs are equipped with multiple antennas and multiple data

streams are transmitted simultaneously, interference between
these streams can significantly degrade overall system perfor-
mance, especially in networks with non-coherent transmission
regimes [4]. Consequently, managing inter-stream interfer-
ence in non-coherent regimes is crucial to ensure that multi-
stream transmissions provide a significant performance boost
compared to single-stream transmissions [8]. Stream selection
based on Interference Alignment (IA) was initially studied in
conventional and heterogeneous cellular networks [9], [10].
However, despite its importance for enhancing spectral effi-
ciency, determining the optimal number of streams for each
UE and selecting the best stream combinations in CF-MIMO
networks remains underexplored.

To address these challenges, this paper investigates multi-
stream selection in CF-MIMO networks with mixed coherent
and non-coherent transmission. We first analyze the impact
of multi-stream transmission in partially coherent CF-MIMO
systems, examining how clustering and transmission strate-
gies affect spectral efficiency and inter-cluster interference.
Therefore, we propose a dynamic stream allocation algorithm
that optimally assigns data streams to UEs equipped with
multiple antennas. The approach jointly computes precoding
and decoding matrices to maximize spectral efficiency while
ensuring each UE receives at least one stream. Stream se-
quences are initialized with the strongest streams from each
cluster-UE pair and compared to determine the sequence
achieving the highest sum rate. The framework dynamically
adjusts the number of streams per UE based on network con-
ditions, balancing throughput and interference mitigation. The
proposed algorithm is evaluated through extensive numerical
simulations under diverse clustering scenarios, comparing it
to both an upper bound and a baseline. The upper bound
is obtained via an exhaustive search of all possible stream
combinations, identifying the optimal sequence. The baseline
follows a greedy approach, constructing a single stream se-
quence by iteratively selecting the strongest streams for each
UE to maximize spectral efficiency. Our method significantly
improves spectral efficiency under severe phase misalignment
and interference. Such conditions are especially challenging in
densely deployed next-generation networks, where distributed
architectures with partial synchronization offer a more flexible
and scalable alternative to conventional methods.

Notations: (A)H denotes the conjugate transpose of a
matrix A. Capital Greek letters such as Ω denote sets, |Ω|
indicates the number of elements in set Ω. The expectation
operator is denoted by E{·}.



II. SYSTEM MODEL

This study considers a CF-MIMO system with L APs, each
with NT transmit antennas, serving K UEs, each with NR

receive antennas. All APs are connected to a central processing
unit (CPU) via fronthaul links. While full phase coherence
is ideal, network-wide synchronization is impractical [2].
Thus, the network supports both coherent and non-coherent
transmissions: APs within a cluster maintain phase alignment
for coherent transmission, whereas inter-cluster transmissions
remain non-coherent due to the lack of synchronization.

The system model for both transmission modes is de-
fined as follows: Let Mk ⊂ {1, . . . , L} denote the subset
of APs serving UE k, referred to as clusters throughout
this paper. A fully non-coherent transmission occurs when
|Mk| = L, meaning that no clustering is applied. Conversely,
when |Mk| = 1, a single large cluster enables fully coherent
transmission.

A. Downlink Data Transmission

The considered phase-aligned transmission inside the clus-
ters is achieved by forming a virtual large MIMO array,
enabling the coherent transmission of data symbols [11]. Each
cluster is associated with one UE. The set of UE-cluster pairs
can be denoted as k ∈ Γ = {1, ...,K}. The implemented
coherent AP clustering method is described in Section III-A.

If the cth cluster is denoted by Mc, in a coherent transmis-
sion, the channel between the subset of APs Mc and UE k is
represented by the collective channel HkMc

∈ CNR×NT |Mc|,
where |Mc| is the number of APs in cluster Mc. The collective
channel between cluster Mc and UE k can be expressed as:

HkMc
=

[
hkl1 hkl2 · · · hkl|Mc|

]
, (1)

where l1, l2, ..., l|Mc| ∈ Mc and hkl ∈ CNR×NT represents
the channel matrix from AP l to UE k, for all l ∈ Mc. The
output signal at user k is defined as follows.

yk = αkkHkMk
xk +

K∑
j=1,
j ̸=k

αkjHkMj
xj + nk (2)

where, αkjHkMj
is the channel matrix between cluster Mj

and UE k with dimension NR × NT |Mj |. Each element
of HkMj includes fading, modeled as an independent and
identically distributed complex Gaussian random variable with
CN (0, 1). αkj is the large-scale fading coefficient and it can be
modeled as αkl = 10−PL(diskl)/10 10−Fkl/10, where PL(diskl)
represents the path loss function with the parameter of the
distance between AP l and UE k, and Fkl is the shadowing
effect [1]. For each receiver k, nk is a NR × 1 vector. Each
element of nk represents additive white Gaussian noise with
zero mean and variance of σ2. xMk

is the transmitted signal
from the Mth

k cluster with dimension NT |Mk| × 1 and it is
calculated as follows.

xMk
=

√
PkTMk

sk (3)

where Pk is the transmit power of AP k. TMk
is the unitary

precoding matrix of cluster Mk with dimension NT |Mk|×qk,
and cluster Mk can transmit qk independent streams with qk ≤
dk where dk = min(NR, NT |Mk|). sk is the symbol vector
with dimension of qk × 1 and denoted as sk = [sk,1 ... sk,qk ]

T

where E
[
∥sk∥2

]
= 1, and it is assumed that the transmit power

is equally shared between the symbols, E
[
|sk,n|2

]
= 1/qk,

n = 1, ..., qk. The total number of streams in the network is
calculated as r =

∑K
k=1 dk. Desired signals are obtained by

multiplying yk with the postcoding vector, Dk with a size of
NR × qk. The decoded data symbols can be written as

ŷk = DH
k yk (4)

The spectral efficiency for stream i of user k is expressed as

ηki = log2(1 + γki), (5)

where γki is the SINR for the ith stream of the kth user and
it is calculated as

γki =
(Pk/qk)α

2
kkdiH

k HkMk
tiktiHk HH

kMk
di
k

diH
k BkMi

di
k

(6)

∀k = 1, ...,K, ∀i = 1, ..., qk

where tik is the ith column vector of the precoding matrix Tk

with dimension NT |Mk| × 1, and di
k is the ith column vector

of postcoding matrix Dk with dimension NR×1. Furthermore,
Bki is defined as the interference plus noise covariance matrix
for the ith stream of the kth receiver and it is given by

Bki =

qk∑
l=1,
l ̸=i

Pk

qk
α2
kkHkMk

tlk(t
l
k)

HHH
kMk

+ (7)

K∑
j=1
j ̸=k

qj∑
q=1

Pj

qj
α2
kjHkMj tqj(t

q
j)

HHH
kMj

+ σ2INR
,

∀k = 1, ...,K, ∀i = 1, ..., qk.

Accordingly, the total sum spectral efficiency is as follows

η =

K∑
k=1

qk∑
i=1

log2(1 + γki), (8)

B. Problem Definition

The main objective is to minimize interference while identi-
fying the optimal stream allocation scheme for each AP cluster
and UE within the system. In this context, the stream allocation
problem aims to maximize the total spectral efficiency of the
network while ensuring that each user has at least one stream
selected, thus guaranteeing service. Mathematically, this can
be formulated as follows.{

(T∗
Mk

,D∗
k)
}
k=1,...,K

= argmax
TMk

,Dk

η (9a)

s.t. dk ≥ 1 k = 1, ...,K (9b)

where dk is the number of assigned streams for user k.

To mitigate phase misalignment in CF-MIMO networks,
existing methods cluster phase-coherent APs [4], [8]. However,
inter-cluster interference persists due to the lack of alignment
across clusters. Moreover, optimizing the number of streams
per UE to balance throughput and interference remains an open
problem. To bridge this gap, we propose a stream selection
algorithm that achieves near-optimal performance comparable
to exhaustive search methods but with significantly lower
computational complexity.



III. THE PROPOSED FRAMEWORK

Motivated by the existing gap in the literature, this section
presents a stream selection algorithm for a coherently clustered
network aiming to optimize spectral efficiency and minimize
interference in a CF-MIMO network. The proposed framework
mainly consists of AP clustering and stream selection. First,
APs are grouped into clusters based on proximity and reference
distance, Dref , as proposed in the studies of [4], [8]. Next,
system parameters are initialized, and the corresponding cluster
CSI is computed. The key contribution of this work lies in
the stream selection phase, where inter-cluster interference is
managed through orthogonal projections after each selection,
suppressing interference both to and from the selected stream.
The overall framework is summarized in Algorithm 1.

A. AP Clustering for Coherent Transmission

To enable mixed coherent and non-coherent transmission
in distributed CF-MIMO networks, we cluster APs into non-
overlapping, phase-aligned groups based on proximity and
aggregate channel gain. This clustering mitigates phase mis-
alignment caused by propagation delays and oscillator mis-
matches, allowing coherent transmission within clusters while
maintaining non-coherent links across them. The clustering
algorithm, adapted from [8] with enhancements for stream
selection, constructs zones of neighboring APs within Dref.
At each step, the largest zone is selected, prioritizing those
with the highest collective channel strength. Each UE is then
associated with the cluster offering the strongest channel gain.
The description of how inter-cluster interference is handled is
in Section III-B. The procedure is detailed in Algorithm 2.

B. Interference Mitigation

In stream selection-based IA algorithms, each stream is
chosen to lie in the null space of previously selected streams,
ensuring interference avoidance.

Streams are computed using the Singular Value Decom-
position (SVD) of all channels, (αkkHkMk

) = UkSkV
H
Mk

where Uk and VMk
are orthogonal matrices representing re-

ceive and transmit beamforming directions at the UE and APs,
respectively, and Sk contains the singular values indicating
stream strengths. The lth column vectors of Uk and VMk

are
denoted by ul

k and vl
Mk

.

To mitigate interference, IA techniques align the interfering
components after each stream selection step. Two interfer-
ence types are considered: (i) from the selected stream to
remaining streams, and (ii) from remaining streams to the
selected stream. Correspondingly, two virtual channels, Virtual
Receiving Channel (VRC) and Virtual Transmitting Channel
(VTC), are defined [9]. Precoding and postcoding matrices,
constructed from the selected stream vectors, are expressed
as: TM∗

k
= [v1

M∗
k
, . . . ,vqk

M∗
k
] and Dk∗ = [u1

k∗ , . . . ,u
qk
k∗ ].

Then, interference is mitigated through orthogonal projections.
For users j ̸= k, the remaining beamformers are projected onto
the null space of the selected stream’s VRC and VTC, yielding
projected matrices H⊥

jMj
. At iteration i, interference from

and to the selected stream is reduced by projecting channel
matrices orthogonally to the respective virtual channels. The
projection matrix is given by P⊥

x = I − xxH

∥x∥2 . The complete
IA procedure is detailed in Algorithm 1 of [10].

Algorithm 1 The Proposed Framework Flow
Input: Set of APs, UEs, CSIs.
Output:AP clusters, selected streams, beamforming vectors.

Coherent AP Clustering by implementing Alg. 2.
Initialize system parameters and compute CSI.
Call Alg. 3 to perform the proposed stream selection algorithm based on
the formed clusters.

Algorithm 2 AP Clustering in PC Transmission
Input: AP positions, hkl ∀k, l, Dref
Output: Set of clusters {Mc} and corresponding HkMc ∀k, c

For each AP l, define zone Zl = {l′ | ∥l − l′∥ ≤ Dref}
while any zone Zl has size > 1 do

Find zones with maximum size |Mc|
Add selected zone to the clusters Mc

Remove its APs from all other zones
end while
for all Zl ̸= ∅ do

Define cluster Mc = Zl

end for
for all formed clusters Mc do

Construct HkMc ∀k, c
end for

C. Multi-Stream Transmission in CF-Networks

In this section, we propose a recursive stream selection
procedure to determine the optimal beam combinations while
incorporating the IA approach explained in sub-section III-B
at each stream selection step. The process initializes multiple
stream sequences, each beginning with the strongest stream
for every cluster-user pair, defined as the one with the highest
singular value of the channel matrix. The number of initialized
sequences equals the number of cluster-user pairs, with the
initial set, Ω0, containing only the best streams of each pair.

After initializing the stream paths, the algorithm iteratively
selects the stream from the available set Ω that maximizes
spectral efficiency. If no stream improves efficiency at iteration
i, the one causing the least decrease is chosen, prioritizing
users with no assigned streams. The process continues until no
more streams can be selected. The selected streams are kept in
a set Ψ. At each iteration of the proposed Comparative Stream
Selection (CSS) algorithm, the selected stream is transferred
from Ω to Ψ, where all selected streams are accumulated. The
whole process is given in Algorithm 3.

D. Complexity Analysis of Stream Selection-Based Algorithms

To benchmark the proposed algorithm, we derive an upper
bound using exhaustive search, which evaluates all possible
stream sequences. Its main drawback is the high computational
complexity, which increases with the number of streams.
Following the IA approach in [10], the complexity of stream
selection algorithms can be compared based on the number
of invocations of Algorithm 1. The worst-case complexity
of this algorithm is O(K(NM2 + N2M + M3)) where
M = max∀k(NT ) and N = max∀k(NR) are the maximum
transmit and receive antenna counts. The total number of
invocations of the IA algorithm in the exhaustive search over
all possible stream combinations is given as follows.

r∑
i=K

i!

[
K∏

k=1

(qk
1

)](r −K

i−K

)
︸ ︷︷ ︸

Number of stream sequences

× i︸︷︷︸
IA calls per sequence

 (10)



Algorithm 3 CSS Algorithm
Construct the initialization set Ω0

Ω0 =
{
(k, l)| k ∈ Γ and l = 1

}
Start constructing stream sequences
for each stream (k∗, l∗) ∈ Ω0 do

Initialize the variables
Ψ = ∅; i = 1; dk = 0; finish = FALSE and
H⊥

kkMk
= HkMk

for k = 1, ...,K

Compute the SVD of all couples
HkMk

= UkSkVH
Mk

for k = 1, ...,K

Set the stream to be selected initially (k∗, l∗)
Ψ = Ψ ∪ (k∗, l∗) and dk∗ = dk∗ + 1

Perform IA by Algorithm 1 in [10].
Construct Ω =

{
(Sk)(l, l)|k = 1, ...,K and l = 1, ..., rank(H⊥

kMk
)
}

Continue selecting streams by applying Algorithm 2 in [10]
Compute (Tk)Ψ, (Dk)Ψ and ηΨ for stream sequence Ψ

end for
Select the best stream sequence according to Eq. (9a)

Ψ∗ = argmax
Ψ

ηΨ

T∗
k = (Tk)Ψ∗ , D∗

k = (Dk)Ψ∗ for k = 1, ...,K
Output: T∗

k , D∗
k ∀k

TABLE I: System Parameters

Parameter Name Parameter Value
Transmit Power of APs 30dBm

Bandwidth 50MHz
Noise Power −174dBm/Hz
Noise Figure 7dB

Simulation Area 1 × 1km

Path loss [1] −30.5 − 36.7 log10

(
diskl
1 m

)
dB

Shadowing std. dev. 4dB
Antenna number of each AP 4
Antenna number of each UE 2

By contrast, the CSS algorithm requires K × r invocations of
the IA algorithm, resulting in significantly reduced complexity.
The greedy selection method further reduces the number of
invocations to at most K ×NR.

IV. PERFORMANCE RESULTS

In this section, the performance of the proposed algorithm,
CSS, is evaluated in a CF-MIMO system setup where users are
independently and uniformly distributed in a 1 × 1km square
area with a wrap-around topology. The minimum distance be-
tween each AP is 50m and Dref = 200m. System parameters
used in the simulations are listed in Table I.

Due to the high complexity of exhaustive search, we
evaluated the upper bound only for a small-scale scenario
(L = 6, K = 4), as shown in Fig. 1a. It can be observed
that the Cumulative Distribution Function (CDF) at 0.9, CSS
algorithm achieves a spectral efficiency of 36 bps/Hz, reaching
86% of the exhaustive search performance, demonstrating its
near-optimal efficiency with significantly lower complexity.
Additionally, CSS outperforms the greedy approach by 16%,
highlighting the benefits of adaptive stream selection. It also
surpasses fixed stream allocation schemes, emphasizing the
importance of dynamically adjusting streams to network con-
ditions. Notably, allocating all streams when d = 2 results in
excessive interference, reinforcing the need for efficient stream
selection. For the larger-scale scenario where L = 24 and
K = 6, the CSS algorithm demonstrates once again a strong
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Fig. 1: Performance Comparison of CSS for different scenarios

TABLE II: Complexity Comparisons of different stream selection
algorithms in terms of invoking Algorithm 1 in [10]

Algorithm Small-scale scenario Large-scale scenario
Greedy 2 2

CSS 4 6
Exhaustive 4.9 × 105 ≈ 9 × 109

performance, as illustrated in Fig. 1b. At CDF = 0.9, CSS
achieves a spectral efficiency of 39 bps/Hz, outperforming
the greedy approach by 11%. Similarly, the fixed resolution
scheme remains far from optimal.

Additionally, Fig. 2 shows the CDF of the spectral ef-
ficiency for various stream selection approaches, analyzing
the impact of interference mitigation and clustering strategies
for L = 12 and K = 4. The results highlight significant
differences in coherent and non-coherent clustering scenarios
between the proposed CSS algorithm and the greedy stream
selection approaches, both with and without IA. The com-
plexity comparisons is given in Table II in terms of the
number of calls to Algorithm 1 in [10]. At CDF = 0.9,
the CSS algorithm with IA in coherent clusters achieves a
spectral efficiency of 39 bps/Hz, outperforming the greedy
algorithm with IA in coherent clusters by 18%. Similarly, the
CSS algorithm with IA in non-coherent clusters achieves 35
bps/Hz, which is 17% higher than the greedy approach in
non-coherent clusters. Furthermore, CSS with IA in coherent
clusters provides a 11% improvement over CSS with IA in
non-coherent clusters. Lastly, CSS with IA in coherent clusters
outperforms both algorithms without IA by 44%, showing
the impact of interference mitigation on improving spectral
efficiency performance.

Fig. 3 presents the CDF of the sum spectral efficiency
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Fig. 3: Performance comparison of CSS and Greedy Approach for
varying number of APs (L = 10, 15, 20) when K = 5.

for increasing number of APs (L = 10, 15, 20) with a fixed
number of UEs (K = 5). As the number of APs increases, the
CSS consistently outperforms the greedy approach, with the
performance gap becoming more evident at higher percentiles.
At the 90th percentile, CSS achieves 32 bps/Hz vs. 28.6 bps/Hz
with greedy for L = 10; the gap increases to 4.85 bps/Hz at
L = 15, and remains significant at 4.4 bps/Hz for L = 20.
These results confirm the scalability and robustness of CSS in
handling interference in denser AP deployments.

The average number of selected streams and the corre-
sponding average spectral efficiency values in the small-scale
CF-MIMO scenario, where L = 6 and K = 4, are compared
for different numbers of receive antennas in Table III. The
results show that increasing NR enables more spatially mul-
tiplexed streams, directly improving the sum-rate and spectral
efficiency.

V. CONCLUSION

In this letter, a novel stream selection framework is pro-
posed for CF-MIMO networks with mixed coherent and non-
coherent transmission. The method addresses phase misalign-
ment and inter-cluster interference via dynamic stream alloca-
tion and interference mitigation. Simulation results confirm the
effectiveness of the proposed CSS algorithm, achieving notable
spectral efficiency gains across various network scales and
interference conditions. Future work will address remaining
challenges, for instance, establishing theoretical performance
guarantees, such as approximation bounds. Moreover, recent
advances in CPU-less and Reconfigurable Intelligent Surface
(RIS)-assisted architectures [12] highlight the need for scal-
able, decentralized stream selection. Finally, in large-scale
and dense deployments with mobile environments, learning-
based clustering and AP-UE association enhance adaptability,

TABLE III: Avg. number of streams and spectral efficiency for CSS
and Greedy Search across different NR values.

NR Algorithm Avg. Streams Spectral Efficiency (bps/Hz)

2 CSS 4.05 28.84
Greedy 4.29 22.80

3 CSS 5.18 31.96
Greedy 5.64 25.75

4 CSS 6.30 35.11
Greedy 6.69 28.10

especially when CSI is unavailable or imperfect, as is often
the case in real-world scenarios.
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