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Abstract—An increase of Video on Demand (VoD) consumption
has occurred in recent years. Delivering high Quality of Experi-
ence (QoE) for users consuming VoD is crucial. Many methods
were proposed to estimate QoE based on network metrics, or
to obtain direct feedback from video players. Recent proposals
usually require monitoring tools installed in multiple network
nodes, instrumentation of client devices, updates on existing
network elements, among others. We propose a method based on
Internet Control Message Protocol (ICMP) probing to estimate
QoE for users consuming VoD. The method allows network
operators to estimate which QoE level can be delivered to the
user according to current network conditions using a Machine
Learning (ML) model. Our method does not require installation
of software at different network nodes, relying on ICMP probing
which is widely supported by existing devices. Our QoE inference
model estimates Mean Opinion Score (MOS) with Root Mean
Square Error (RMSE) of 0.98, with additional 27 Kbps of traffic
during probing. We evaluate the model’s generalization capacity
when estimating QoE for videos different from the one used for
training, which can speed up model’s creation process. In those
cases MOS was estimated with RMSE of 1.01.

Index Terms—quality of service, quality of experience, DASH
video

I. INTRODUCTION

Assessment of user satisfaction with networked services
gained prominence recently. Network and Over The Top
(OTT) operators have already acknowledged that users’ sat-
isfaction with services and connectivity is poorly expressed
using traditional Quality of Service (QoS) metrics [1]. Industry
and academia have turned to QoE, which indicates the users’
degree of satisfaction or annoyance when consuming services
or applications [2]. QoE assessment for VoD is a relevant
topic, as this kind of application will account for over 80 %
of global IP traffic by 2022 [3]. Most internet video traffic is
now delivered through HTTP Adaptive Streaming (HAS) [4],
[5]. HAS adapts video quality during playback according to
network conditions to avoid playback stalling and rebuffering
events. Standardization efforts have been carried to develop
an open standard for HAS, resulting in the Dynamic Adaptive
Streaming over HTTP (DASH).

Many works in the literature seek to estimate QoE for
DASH VoD [6]. The first group of methods monitors client
applications collecting data such as buffer usage and playback
stalls, providing reliable and accurate information. This kind

of method is commonly used for local tuning of player
applications, with no transmission of this information to the
network, which could raise privacy concerns. A second group
monitors network QoS such as throughput and Packet Loss
Rate (PLR), relying on information that can be extracted from
network flows or inspected from packet data. This type of
method can be costly according to the amount of information
needed to be extracted. It also raises privacy concerns and can
be infeasible for encrypted traffic. A third group of methods
combine application and network information, and can provide
accurate QoE information but suffers from privacy and limita-
tion problems found in both methods. While some proposals
use high-level QoS obtained using specialized tools [7], others
require inspection of TCP/HTTP headers [8], [9]. With no
consolidated solution to monitor QoE, the heterogeneity poses
an additional challenge for network operators.

Feedback-based extensions to DASH have been specified,
namely, Server and Network Assisted DASH (SAND) [10].
SAND gives the ability for clients and network elements to
exchange signaling messages to improve user QoE. SAND,
however, presents many hurdles for widespread adoption: it
requires network elements prepared to process the signaling
messages and perform eventual adjustments [11]; there is no
standard format or metrics to map between network QoS and
QoE [1]; existing network elements may be incompatible with
SAND.

We propose a method using ICMP probing to monitor
network QoS between DASH client and server. Being a well
supported protocol, it works out of the box on legacy network
equipment. We developed a simple algorithm to adjust probing
frequency and run multiple parallel probes to obtain the ap-
propriate granularity of measurements. Therefore, the operator
can obtain QoS conditions of Round-Trip Time (RTT), jitter
and PLR. Such measurements are passed to a ML model that
estimates the delivered QoE in terms of MOS according to the
ITU-T P.1203 Recommendation [12]. The dataset used to train
the model was created using a controlled environment with
a catalog of 19 videos with different contents and duration.
Samples from the video with shortest duration were used for
model training, while samples from the remaining videos were
used to evaluate generalization. The model provided inferences
of MOS with RMSE of 1.01.

The paper is organized as follows: Section II discusses
related work, focusing on those performing QoE inference for978-3-903176-31-7 © 2020 IFIP



VoD based on network QoS. Section III describes the proposed
method. Setup of experiments is detailed in Section IV. Results
are presented and discussed in Section V. Section VI presents
the conclusion and future work.

II. RELATED WORK

Costa et al. [7] propose the use of network measurements
to estimate Application QoS (AQoS), and from AQoS predict
user’s QoE. The first step is mapping delay, jitter, throughput
and PLR to startup time, stall count, and total stall time.
Network is monitored using NetMetric [13], requiring probes
in multiple points. The experiments use videos with fixed
resolutions (1080p and 720p). The authors in [8] reconstruct
a video session analyzing packets passing through an inter-
mediate node. They use this information to determine QoE
parameters such as rebuffering events and bit rate variation.
The system also requires extraction of the manifest file to
process the intercepted information.

The approach in [9] inspects packets of the video flow
to find those carrying video segments, also using an HTTP
proxy to overcome flow encryption. An algorithm estimates
initial playback delay, number and duration of rebuffering
events. Experiments were performed using a single video
with fixed quality. Khokhar et al. [14] present a method to
estimate QoE using network-level measurements on encrypted
YouTube traffic. In addition to features such as throughput,
packet interarrival times and chunk sizes, another 48 features
are used. QoE is estimated in terms of playback status, quality
switches and MOS. The work does not address how to obtain
all the input features in real networks.

Our method is based on simple ping tools, eliminating the
demand for specialized monitoring software. Further, active
probing provides better privacy than methods based on packet
inspection, and is applicable to encrypted VoD services. Our
method provides a more comprehensive indication of user
QoE, as it estimates more end-user metrics. It estimates MOS
based on ITU-T P.1203 Recommendation [12], comprising
metrics such as video stalls, video quality switches and video
resolution played. Model training is more streamlined than the
state of the art, because it employs data samples from a single
video, at the same time reaching similar accuracy levels.

III. PROPOSED METHOD

Our method is composed by an ICMP probing module that
estimates QoS conditions between VoD client and server, and
an MOS inference model based on decision trees. One way to
apply the method is shown in Figure 1. The Probing Module
(PM) is co-located with the VoD server, considering that the
monitoring takes place at the same network point as the VoD
server and takes the same route. This restriction is feasible in
the context of partnerships between Internet Service Providers
(ISPs) and OTT using CDN-ISP or Mobile Edge Computing
(MEC) [15], [16]. The resulting QoS is passed to the QoE
Model that estimates the MOS value.

ISP’s Network

Probing 
Module

VoD 
Server

CDN-ISP

VoD 
Client

QoE Model

Fig. 1. Probing module deployed along the VoD server (CDN-ISP or MEC
context).

A. Probing Module

An initial analysis of the collected data showed that the
MOS was strongly affected by PLR in downstream (server to
client). In our samples the sessions with 0 % of PLR had an
average MOS of 5, while those with 0.5 % PLR had average
MOS close to 3. Above 2.3 % PLR the average MOS was
approximately 2. Because of the strong influence of PLR we
defined that our PM must provide PLR with 0.1 % granularity,
requiring 1,000 samples to be able to achieve such granularity.
The amount of samples to be collected by the PM can be
relaxed to explore the trade-off between precision and traffic
overhead. The required samples must be collected within a
limited and recent window of time, in order to reflect the
current state of the network. This work uses a window of 30
seconds, which is twice the size of typical buffers in DASH
clients. The PM spawns multiple parallel and independent
ping probes. The probing frequency of all probes is adjusted
according to observed RTT and jitter, in order to obtain the
required amount of data during the time window.

Traffic overhead generated during probing can be estimated
using Odir = minSamples

timeWindow × (Sicmp + Pov) where Odir is
the overhead per second on a given direction (downstream or
upstream). minSamples is the minimum amount of samples
to collect during a window of time, timeWindow is the
duration of the time window in seconds. Sicmp is the data
size of probe packets in bits and Pov is the protocol overhead
from underlying technologies.

B. MOS Inference Model

We use an ML model to perform MOS inferences from the
QoS input data provided by the PM. We selected eXtreme Gra-
dient Boosting (XGBoost) [17], as methods based on Decision
Tree (DT) have shown better results (predictions with lower
RMSE) when mapping QoS to QoE [18]. XGBoost requires
a labeled dataset, which was created instrumenting the DASH
client to collect three execution metrics: i) Representation,
indicating the resolution and bitrate of the video segment being
played; ii) Playback rate, that returns if the playback is running
or if the video is stalled; iii) Timestamp, to mark the time each
measurement was taken. All values were stored in intervals
of 0.5 seconds. These values are used to calculate the MOS
values based on the ITU-T P.1203 Recommendation.

IV. EXPERIMENT SETUP

The infrastructure used to generate the dataset is shown in
Figure 2. We set up three Docker containers. The server runs



the NGINX Server [19] hosting 19 different videos and the
DASH player application. The client container accesses the
server and runs the player over Firefox. We used the reference
player provided by DASH Industry Forum1 version 3.0.0,
instrumented to collect playback metrics. The configurations
of the player were kept as default, except for buffer which
was changed to 12 seconds so network oscillations would be
reflected quicker in playback quality. A custom script in the
client stored the metrics locally to avoid generating additional
network traffic. The last container is the QoS Monitor, which
performs ping probing based on the fping tool2. Network
impairments were set using Traffic Control (TC). Server and
QoS Monitor are considered as deployed at the same network
point, therefore the same impairment values were set to their
interfaces.

Client

Server
Srv 

Iface

Cli 
Iface

NGINX HTTP 
DASH Server

DASH.js Client

Traffic Control

Session Logger

QoS Monitor

ICMP Probe Mon 
Iface

Network

Fig. 2. Experimental environment

TABLE I
SAMPLE VIDEOS

Video Duration Type
1Another World (another) 00:03:11 Nature
1Another World 2 (another2) 00:03:06 Nature
1Football Barcelona (barcelona) 00:03:14 Sports
1The Fountains Of Bellagio (bellagio) 00:03:43 Arts
1La Boheme (boheme) 00:04:29 Music Video
1Power of Curve (curve) 00:03:15 Promotional
1The Quiet Czech (czech) 00:03:24 Documentary
1Phantom Flex (flex) 00:03:07 Promotional
1Garden (garden) 00:03:05 Promotional
1Jimix Put Your Hands Up (jimix) 00:03:56 Music Video
1Landscape (landscape) 00:03:10 Nature
1Lumix (lumix) 00:03:07 Documentary
1Slam Dunk (slam) 00:02:56 Sports
1Surfing (surfing) 00:02:59 Sports
1Lovely Swiss (swiss) 00:03:41 Documentary
1Travel With My Pet (travel) 00:02:35 Documentary
1See the Unexpected (unexpected) 00:03:18 Sports
1Life Untouched (untouched) 00:03:18 Nature
17 Wonders Of The World (wonders) 00:03:51 Documentary
1http://4kmedia.org

The sample videos are described on Table I. A short name
in parenthesis, used as reference throughout this paper, is
shown for each video. The table also shows the duration
and type of each video. All videos were prepared following
a standard process. Each original video was encoded in 10

1https://dashif.org/
2https://fping.org/

representations (a version of the video with a specific reso-
lution and bitrate), then, each version is split into segments
of short duration (4 seconds in our work). Finally, a Media
Presentation Description (MPD) file is generated containing all
information needed for the client application to download and
properly adapt playback quality according to observed network
conditions. Our videos were encoded using the H.264 codec,
without an audio track. The 10 representations used were:
320x180 (200 Kbps), 320x180 (400), 480x270 (600), 640x360
(800), 640x360 (1,000), 768x432 (1,500), 1024x576 (2,500),
1280x720 (4,000), 1920x1080 (8,000), 3840x2160 (12,000).
The MPD bandwidth field was fixed for each representation
in all videos, in order to the client operate consistently. The
values (in bits per second) used were, respectively: 256K,
512K, 760K, 1,020K, 1,260K, 1,900K, 3M, 4M, 10M, 20M.

Bandwidth and delays set in TC were taken from a uni-
form distribution between 0 and 400 Mbps, and 0 and 800
ms, respectively. Jitter was uniformly taken between 0 and
half of the delay used in the session. PLR values were set
according to a Gamma distribution with shape k = 0.3,
and scale θ = 1, derived to achieve a similar distribution
to measurements provided by Measurement Lab (M-Lab)3.
For MOS calculation and dataset labeling according to ITU-
T P.1203 Recommendation we used the software4 provided
by [20], [21]. The operation mode used was 0, combining
video resolution (and resolution switches), and occurrence and
duration of playback stalls. Other parameters for the software
were device type (PC), display resolution (3840x2160), and
viewing distance (150 cm).

V. RESULTS

A. Data Analysis

We performed over 60,000 video sessions. Approximately
25,000 sessions were executed with the “travel” video due
to its shorter duration, which allowed us to experiment a
wider range of network impairments. Approximately 2,000
sessions were executed for each other video. Table II shows
the Spearman correlation between QoS and MOS. The first
eight rows show the correlations with parameters set using
TC and the last three with measured QoS. Although the table
shows a weak correlation between Downlink Bandwidth and
MOS, it occurs due to range of values used for experiments.
For sessions with bandwidth up to 4 Mbps, the observed
correlation was 0.61. However, correlations between Downlink
Bandwidth and MOS quickly drop as we evaluate sessions
with higher bandwidth values (e.g. 0.15 for sessions with up to
40Mbps). It should be noted that TC bandwidth configuration
is not directly reflected in throughput, therefore, even sessions
configured for 400 Mbps can experience low throughput due
to delay, jitter and PLR. Different from bandwidth, Downlink
PLR and MOS show a strong correlation for the entire
evaluated range. Correlations with the measured metrics also
show a strong influence of PLR on MOS, followed by RTT.

3https://www.measurementlab.net/
4https://github.com/itu-p1203/itu-p1203

https://fping.org/


TABLE II
QOS AND MOS SPEARMAN CORRELATION

QoS Condition Correlation to MOS p-value
Downlink Bandwidth 0.0226 p < 0.001
Uplink Bandwidth 0.0007 0.0182
Downlink Delay −0.1872 p < 0.001
Uplink Delay −0.1354 p < 0.001
Downlink Jitter −0.1825 p < 0.001
Uplink Jitter −0.1128 p < 0.001
Downlink PLR −0.7752 p < 0.001
Uplink PLR 0.0093 p < 0.001

RTT −0.2021 p < 0.001
Jitter −0.1456 p < 0.001
PLR −0.4567 p < 0.001

B. Model Training

For model training we used samples of the video with
shortest duration (“travel”), from which we had more ses-
sions with different network conditions. We used data of
20,000 sessions of “travel” for hyperparameter tuning, training
and Cross Validation (CV). Approximately 5,000 sessions of
“travel” and all sessions of the other videos were used for
evaluation. Hyperparameter tuning was done using 100 trials
of random search [22]. The hyperparameter values selected for
XGBoost were: colsample bytree of 0.85, colsample bylevel
of 0.8, subsample of 0.91, learning rate of 0.02, alpha of 1,
and max depth of 20. The maximum number of trees was set
to 1,000, and we used early stopping to interrupt training after
20 successive rounds of no accuracy improvement.

C. Inference Results

The RMSE obtained in 5-fold CV was 0.8965 with stan-
dard deviation of 0.0003. Over the generalization dataset, the
RMSE for the “travel” video using the final model was 0.9887.
For sessions of videos different than “travel”, the overall
RMSE was 1.0131. Table III shows the RMSE obtained for
each individual video. These results show slightly different
RMSE values for each video, with an average o 1.0052 and
standard deviation of 0.0231. Minor differences are possibly
caused by video content differences, which make the file
size of video segments to vary between videos. Nevertheless,
RMSE values were similar to those obtained with “travel”,
with an RMSE oscillation between −0.02 and +0.06. With
such small differences, an operator can use a single model to
infer MOS for all videos on the server. The creation of the
model is accelerated as the short-duration video allows more
sessions with distinct network impairments to be executed.
Also, retraining is needed only when a new video format (e.g.
different resolutions or codecs) is added.

Figure 3 shows the error according to MOS range. Higher
errors occurred when the MOS was high (between 4 and 5).
On the other hand, when MOS was below 4 the distribution
of RMSE values is similar for all classes of MOS, with errors
below 1 in approximately 80 % of samples. This shows a
pessimistic behavior of the system, inferring a low QoE when
the client is actually receiving a high QoE. On the other hand,

TABLE III
INFERENCE RMSE BY VIDEO

Video RMSE Video RMSE Video RMSE
another 0.98 another2 0.98 barcelona 1.02
bellagio 1.01 boheme 1.04 curve 1.02
czech 1.01 flex 0.97 garden 1.01
jimix 1.03 landscape 1.03 lumix 1.00
slam 0.96 surfing 0.99 swiss 1.03
travel 0.98 unexpected 1.00 untouched 1.01
wonders 1.03 - - - -

higher accuracy is achieved for lower QoE levels. This result is
a consequence of the PM’s inability to differentiate downlink
from uplink packet loss.
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Fig. 3. MOS inference error by MOS class

VI. CONCLUSION AND FUTURE WORK

We proposed a practical method for QoE inference for
DASH VoD that does not require instrumentation of client
devices, changes on existing network elements, deep flow
inspection or proprietary tools. Monitoring is done using
widely supported ICMP. An ML model was trained to infer
MOS based on the ITU-T P.1203. For model training we used
data from sessions of the shortest video of the catalog, and
evaluated model’s accuracy for the other ones, achieving an
RMSE of 1.01. Probing overhead was minimal, taking 1.4 %
of traffic if the video were served in lowest quality. In future
work we will use this method as feedback for network control.
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