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Abstract—Quality of Experience (QoE) should be the
driver for network orchestration in 4G networks. At
the same time, the network must be able to cope with
high bandwidth requirements from applications such as
video streaming, while dealing with a large number of
users. This paper proposes a network orchestrator that
adjusts network parameters to improve QoE of video
streaming. The orchestrator uses Device-to-Device (D2D)
communication to improve user’s QoE, also reducing the
demand on 4G network. The use of D2D is triggered
by a machine learning engine. Experiments made in
a physical testbed show an improvement on the mean
horizontal video resolution from 768 to 1280 pixels, as
well as a decrease of around 90% at the impact on
the QoE, considering the number of video resolution
changes. Finally, the demand on the network backhaul
is decreased by around 38%.

Index Terms—Machine Learning, Quality of Experi-
ence, Video Streaming, Device-to-Device

I. INTRODUCTION

The 4G cellular networks are lacking on bandwidth
to supply all the connected devices [1]. One type
of bandwidth-hungry applications is video streaming.
This type of application requires a stable network
bandwidth to not compromise the user’s Quality of
Experience (QoE). Some standards such as the Dy-
namic Adaptive Streaming over HTTP (DASH) [2]
have risen trying to fix the unstable and low network
bandwidth experienced nowadays. DASH can change
the video quality in situations of network instability,
enabling the application to keep streaming the video
without compromising the users’ QoE. However, with
the constant increase in the number of mobile sub-
scribers, as well as new applications that demand

intensive network data consumption, like online gam-
ing and video sharing [3], there is a great possibility
of the video be transmitted with lower resolutions,
which can affect the users’ QoE. Therefore, different
network communication technologies such as Device-
to-Device (D2D) must be researched to provide better
service quality to the end user.

The D2D Proximity Services 3GPP standard defines
as D2D communication the ad hoc communication
between devices close to each other, with little or no
intervention of the base station [4]. This technology
enables to unburden the core of the network by
moving the data traffic to the edge of the network,
a process known as mobile data offloading [5]. With
the use of D2D, different users requesting the same
content can share it among themselves, reducing the
need for connections with the same content at the
core network. A use case for this scenario is a large
group of people in a stadium watching a game replay
from their phones. Considering the traditional 4G
network, the requests for the same video will compete
for bandwidth. However, when D2D is applied, the
same video could be transmitted only once till the
edge of the network, and then it would be shared
between users using the wireless interface for D2D
communication. As a consequence, we can offload
data traffic from the core network [6] and increase the
possible bandwidth to provide a better user experience
[7]. Besides lowering the demand at the network
backhaul, the D2D connectivity can lower the energy
consumption of the network infrastructure [8].

There are several D2D works that help us to under-
stand the pros and cons of the technology [4], [6]–[8];
however, how can D2D networks dynamically enhance
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video streaming QoE? In this work, we study how
an orchestrator can manage D2D groups increasing
the QoE of video streaming. The orchestrator was
developed with Machine Learning (ML) and the video
streaming technology used was DASH. It is important
to highlight that this proposal does not require changes
to the User Equipment (UE) enabling its implemen-
tation in real computer networks. Results on an ex-
perimental platform show that, with the orchestrator,
the mean horizontal video resolution increased from
768 to 1280 pixels. At the same time, considering the
number of resolution changes, there’s a decrease of
about 90% at the impact on the QoE. Finally, the
required backhaul throughput decreased by up to 38%.

The rest of this paper is organized as follows: Sec-
tion II presents the related work. Section III presents
the ML-based orchestrator’s overall architecture. Sec-
tion IV presents the experimental setup, describing
the hardware/software used. Section V presents the
obtained results with the use of the proposed orches-
trator. Finally, Section VI concludes this work.

II. RELATED WORK

Ullah and Hong [9] choose as the share point
through D2D the UE with the highest signal-to-noise
ratio in relation to the evolved Node B (eNodeB). In
this proposal, an UE announces the files of interest and
a neighbor UE will do the sharing, even if the sharing
UE is still downloading the files. While in the state
of the art the improvement of QoS is a consequence
of the algorithm, not the end goal, in our proposal the
orchestration is directly driven by the QoE. Besides
that, the referred work was limited by simulations.

Essaili et al. [10] manage the transmission resources
based on the buffer space from the UEs. The authors
claim to improve the QoE because of the increase in
throughput, since it steers more traffic to UEs with
empty buffers. One of the main limitations of the
referred work is that throughput improvements are
obtained through traffic shaping. Consequently, it does
not offload traffic from the 4G network, which is
a disadvantage in comparison with the current work
that proposes a QoE, ML-based orchestrator with a
prediction module to decide by the use of D2D, which
does offloading from the 4G network.

Doppler et al. [11] raised the downlink throughput
through underlay D2D. The authors propose a D2D
channel control between two users only, instead of
groups of different sizes. The traffic through 4G of
each UE is monitored for possible formation of a D2D
channel between two UEs. The implemented system

decides to use D2D communication when it detects
a throughput gain with D2D in relation to 4G. The
proposal still controls the transmission power between
D2D transmitters to decrease the interference on the
4G UEs. Such work limits the offloading ratio to 50%,
which is a disadvantage in comparison to the present
work, since it allows the formation of groups with
more than two UEs. Additionally, the referred work
does not consider the QoE from the UEs.

Pyattaev et al. [6] calculated the viability of mobile
data offloading with Wi-Fi Direct. The formation of
D2D groups considers the device’s location. The au-
thors show that D2D clients obtain better transmission
rates due to the shorter links of Wi-Fi. However, the
referred work does not consider the QoE from UEs in
order to define the D2D pairs, and the evaluation was
done only through simulations.

As can be seen above, some works in the literature
aim to improve the efficiency of the cellular spectrum
or evaluate specific use cases (e.g. peer-to-peer). How-
ever, in most proposals the improvement in QoE is
implicit from an improved QoS. Further, the studies
are based on theoretical analysis or simulations [4],
[12]. In this work the decision is driven by a QoE
metric, and in order to provide more realistic results,
our solution is evaluated in a physical testbed.

III. ML-BASED ORCHESTRATOR

This section describes the proposed solution, with
the network architecture and the orchestrator software.

A. Network architecture

Figure 1 shows the overall architecture of our
solution. The architecture has three main entities: A
central, fixed orchestrator with the prediction module
for the D2D-based decisions; a 4G network composed
by UEs which support D2D; and a video server.

The video server may be positioned in the cloud,
being accessible by the 4G network through an optical
link, or at the edge, i.e. close to the 4G network, if
the optical link does not support the video demand,
for example.

Finally, the 4G network monitors signal data from
the UEs and sends it to the orchestrator in real time,
which inputs it to the prediction module. The D2D
decisions are sent by the orchestrator to the eNodeB,
which forwards them to the UEs.

B. D2D Orchestrator

The orchestrator algorithm relies on a Machine
Learning (ML) predictor, which predicts in real time
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Fig. 1: Overall architecture of the proposed solution.

the horizontal video resolution (the class) for each
UE watching a video. The predictor was modeled
using Supervised ML. We assume that the horizontal
resolution is the QoE goal, because higher resolutions
improve the user’s perception of the video quality.
Since the resolution of the video is given by discrete
values, we use a classifier instead of a regressor.

The predictor’s input data is collected in the eN-
odeB (the 4G network features) and the horizontal
resolution of the video is logged by the UEs for
evaluation purposes. The following data is collected
from the eNodeB:
• UE’s bit rate (Download/Upload)
• RNTI - Radio Network Temporary Identifier
• CQI - Channel Quality Indicator
• MCS - Modulation and Coding Scheme
• BLER - Block Error Rate
• SNR - Signal-To-Noise Ratio
• PHR - Power Headroom
Algorithm 1 decides when to create a D2D group

using the output of the predictor. A group is created
if the use of D2D will increase the resolution of the
video received by some UE, i.e. if there is an UE
watching a video that has a resolution lower than
the maximum resolution supported by the server. The
chosen Group Owner (GO) is the UE that receives the
video with the highest resolution (line 5). Therefore,
the interface change (from 4G to D2D) will occur
when the UE with the highest horizontal resolution
remains stable during a 10 second interval, in order to
guarantee a more stable resolution.

It is possible that the devices connected to the D2D
network return to the 4G network. This occurs when
a group is formed and the expected resolution for one
of the client devices is higher in 4G than in the current
D2D connection (line 9).

Algorithm 1 D2D orchestration algorithm
1: procedure D2DDECISION( )
2: MaxResolution← max(Predictor(X)) ∀X ∈ RNTI
3: RntiGO ← {X ∈ RNTI | X.Predictor(X) =

MaxResolution}
4: if {∃ X ∈ RNTI | X.resolution < MaxResolution} then
5: createGroupD2D(RntiGO)

6: procedure 4GDECISION(RNTI)
7: PredictedResolution← Preditor(RNTI)
8: if PredictedResolution > RNTI.CurrentResolution

then
9: GoBackTo4G(RNTI)

IV. EXPERIMENTAL SETUP

This Section presents the experimental setup, with
the implemented network architecture based on Figure
1, and the hardware/software used for the evaluation.

Network Architecture: The orchestrator and the
D2D decision module run on a VM located at the
UFMG’s FUTEBOL1 testbed. The video server runs
in a VM at the UFRGS’s FUTEBOL testbed, acting as
the cloud in this case. On the other hand, the alternate
position of the video server (i.e. the edge) is located
in a VM at the UFMG’s FUTEBOL testbed.

EPC and eNodeB: The 4G LTE Evolved Packet
Core (HSS + MME + SP-GW) and the eNodeB run on
two separate Docker containers at the UFMG’s FUTE-
BOL testbed. We use Core i7@2.8GHz PCs with
16GB of RAM from the same testbed to emulate the
4G infrastructure, which also have second-generation
Ettus USRP software defined radios connected by
USB (B200 and B210 models). We used srsLTE2 to
emulate the EPC and the eNodeB.

Video Clients: For the video clients (the UEs),
we used five LG Nexus 5X smartphones, which also
support D2D communication through Wi-Fi Direct.
We developed an Android application to download
video from a DASH server, at the same time log-
ging the video horizontal resolution (for evaluation
purposes, since the ML predictor does not require
data from the UE) and receiving control messages
from the 4G infrastructure, which instructs the UEs
to switch between the 4G and the D2D interfaces. For
simplification, the caching UE is always the Group
Owner (GO) of the D2D Wi-Fi Direct group, however,
other UEs could also act as cache.

1http://www.ict-futebol.org.br
2https://github.com/srsLTE/srsLTE
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Video Server: For the video server, in UFMG we
use PCs with the same hardware setup as the ones
used for the EPC and the eNodeB, while in UFRGS
we use Core i7@2.4GHz PCs with 4GB of RAM.
The video is split in chunks that can be downloaded
independently from nginx3. The server provides seven
different horizontal resolutions for the video Big Buck
Bunny, from 320 to 1920 pixels.

V. RESULTS

A. Training the Predictor

The training instances were obtained from UEs
watching videos at the UFMG’s FUTEBOL testbed,
with the data generated by the eNodeB as the input
(see Section III-B), and the logged horizontal resolu-
tion from the video, at each UE, as the output.

The collection was done in decreasing rounds from
five UEs to one, receiving the video only through
the 4G network. Each round had three repetitions.
The main goal in this phase was to cover the highest
amount of behavioral possibilities from the network.

The training base comprises 450 minutes of video
playback and 10348 instances, being 771 for class 320
(the horizontal resolution of 320 pixels), 447 for 480,
1662 for 640, 3795 for 768, 1105 for 1024, 1245 for
1280 and 1323 for class 1920.

The learning procedure was done using Weka4. We
performed experiments with five classification algo-
rithms. Then, we evaluated the two algorithms with
the highest hit rate (number of correct predictions) in
scikit-learn5. For each evaluation we applied cross-
validation, where 80% of the data were used for
training and 20% for tests and validation.
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Fig. 2: Evaluation of the classification algorithms.

Figure 2 presents the correct classification rate for
each ML algorithm evaluated with Weka, as well as

3https://www.nginx.com/
4https://www.cs.waikato.ac.nz/ml/weka/
5https://scikit-learn.org/stable/

the two best algorithms in scikit-learn. As can be seen
in the Figure, Random Forest obtained the highest
classification rate in both ML tools. Therefore, this
algorithm was chosen for the experimental evaluation.

The model checking after training allows us to
explain the behavior of the predictor and the 4G
network. Considering the relevance of each feature
collected from the 4G network, the inputs SNR,
downlink BLER and downlink BRATE obtained the
best values, 0.2, 0.15 and 0.17 respectively, while the
other inputs obtained values ranging from 0.05 to 0.1.

Table I shows the confusion matrix obtained with
Random Forest, with the number of samples associated
to the correct class. Our model is precise for class
1920, but strives to separate class 768 from classes
640 and 1280. The precision (ratio between samples
classified correctly and the total number of samples)
and recall (ratio between samples classified correctly
and the number of times the class appears in the
test set) surpassed 70% and 80% respectively for all
classes. For class 1920, the precision was of 98%.

TABLE I: Confusion matrix.
XXXXXXXXXXActual

Predicted
320 480 640 768 1024 1280 1920

320 130 0 9 28 0 4 0
480 3 68 10 4 5 5 0
640 2 1 256 54 3 1 0
768 9 0 12 699 3 21 0
1024 3 2 11 6 179 12 0
1280 0 0 5 35 16 198 6
1920 0 0 0 0 0 1 273

B. QoE Improvement with the ML-Based Predictor

Our main goal in this phase was to measure the
QoE improvement achieved with our orchestrator and
the predictor from the training phase. The experiment
was run ten times, and considers a confidence interval
of 95%. Our setup is composed by five UEs, with the
orchestrator instructing them to form D2D groups.

Figure 3 shows the mean horizontal resolution for
each UE, with and without the orchestrator. For all
the UEs, the scenario with the orchestrator overcame
the one without it. For UE 3, the mean horizontal
resolution increased from 625 to 1559, an increase of
about 150%. This was already expected, since D2D
will be used only if it is found an UE with the
video at a higher resolution than that of the other
UEs. It can be also observed in Figure 3 that the
mean horizontal resolution was the same for all the
UEs. This occurred since only one D2D group was
formed with all the UEs, during all the experiments.
In this way, all the UEs kept the same video resolution.
Further, since there is a single video download on
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the 4G network, the bandwidth demand is reduced,
a factor that contributed to achieve higher resolutions.
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Fig. 3: Mean horizontal video resolution of each UE.

Finally, the confidence intervals in Figure 3 show
larger variation in the resolution of some UEs in
the case without the orchestrator. Such variation, and
the differences of the mean resolution between the
UEs from the case without the orchestrator, can be
explained by the high demand at the 4G network, in
comparison to the case with the orchestrator, which
had only one UE downloading video through 4G. The
high concurrence causes frequent resolution changes
that can harm the QoE. Such harm occurs mainly if
the video is at lower resolutions, which was the case
without the orchestrator, where the horizontal reso-
lution ranged between 480 and 768 pixels. With the
orchestrator, although the variations were closer to the
ones without the orchestrator, they were constant for
all the UEs, showing that D2D has a more predictable
behavior. Also, the variation with the orchestrator
occurred at horizontal resolutions superior to 1280
pixels, reducing the harm to the QoE, since variations
at this level are less easily perceived by the users.

Figure 4 shows the resolution behavior for each UE,
with the use of the orchestrator. At the left side of the
vertical line, the downloads occur with 4G, while the
right side shows the downloads with D2D. During the
downloads with 4G, the resolution changes constantly,
due to the high concurrence at the 4G network. After
some time, UE 2 surpasses the other UEs with higher
resolutions and keeps a high difference in comparison
to them. One possible reason is that UE 2 had a better
4G connection, which favored the download of higher
resolutions. This was also observed by the prediction
module, that decided in time 00:20 to use D2D and
choose UE 2 to be the GO. Therefore, the other UEs
started downloading the video from him, following
the GO’s video resolution pattern. During the use of
D2D, there are variations at the resolution delivered
to the GO, however, such resolution remained high in

relation to the interval where all the UEs are connected
through 4G, as shown in Figure 4. For the sake of
simplicity, this variation was hidden from time 00:41.

Fig. 4: Network behavior with the orchestrator.

As stated before, frequent resolution changes can
harm the QoE. In order to address this issue, Yin et
al. [13] proposed Equation 1 to evaluate the impact
on the QoE based on the number of video resolution
changes between chunks. The higher the result, the
higher is the impact.

1

K − 1

K−1∑
k=1

|q(Rk+1)− q(Rk)| (1)

According to Equation 1, K is the sum of video
chunks, k is one downloaded chunk, and Rk is the
bitrate reached with chunk k. Finally, function q(Rk)
maps the bitrate reached with chunk k to the video
quality perceived by the user. Considering the network
behavior from Figure 4 and Equation 1, the use of
D2D from time 00:20, in relation to the interval where
D2D is not used (between times 00:00 and 00:20),
decreases the impact on the QoE from 1940878 to
186976, a decrease of about 90,4%.

C. Usage of the Optical Link
In this phase we evaluate the demand on the optical

infrastructure. In our experiments, the video server
is positioned at the edge (the UFMG’s FUTEBOL
testbed) or at the cloud (the UFRGS’s FUTEBOL
testbed, 1500km far from the UEs). We measure the
capacity of the orchestrator to cope with video servers
that are far away from the UEs, even though the
predictor was trained in a local network. We consider
as performance metric the amount of bytes sent by the
video server. The experiment was run ten times, and
considers a confidence interval of 95%.

Figure 5 presents the mean amount of bytes trans-
mitted by the video server to the UEs, when positioned
at UFRGS and at UFMG. There is a clear reduction
of the demand in the optical link with the use of
the orchestrator. Considering the video server located
at UFRGS, the orchestrator managed to decrease the
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amount of bytes from 105.59 MB to 65.25 MB, a
decrease of about 38.2%. The decrease is almost the
same when the server is located at UFMG: From
112.08 MB to 67.35 MB (about 39,9%). Such im-
provement was only possible because the orchestrator
left only one UE downloading with 4G and the optical
link (the caching UE), while the other UEs started
downloading from the caching UE with D2D.

Fig. 5: Optical link demand with and without the orchestrator.

Further, a higher amount of bytes was measured
at UFMG in relation to UFRGS, when comparing the
scenarios with and without the orchestrator separately.
This occurs because a video server closer to the 4G
network is less subject to noise and packet losses,
which allows UEs to request higher resolutions, re-
sulting in a larger amount of bytes being transmitted.

Finally, for the scenario with the orchestrator, the
difference of bytes transmitted between the video
server at UFRGS and at UFMG is smaller than the
difference observed at the scenario without the orches-
trator. This shows that the orchestrator brings stability
to the expected performance of video transmissions,
independently of the position of the video server.

VI. CONCLUSIONS

This work proposed an orchestrator that uses D2D
communication to improve the QoE of UEs connected
to a 4G network, as well as to reduce the demand
on the network backhaul. Differently from the state
of the art, where the improvement of the QoE is the
consequence of a higher QoS, the QoE metric is con-
sidered as the main goal of the orchestration decisions.
The orchestrator uses machine learning to predict the
video resolution at the UEs, and switches back and
forth from D2D to 4G based on that information.

The proposal was evaluated on a testbed spanning
more than 1500km, covering cases of video servers
in the cloud or at the edge (near to the UEs). Results
showed that the use of D2D improves the QoE by
means of video transmissions with better resolutions.
The mean horizontal resolution improved from 768

to 1280 pixels. Further, the impact on the QoE is
decreased by around 90% considering the number of
resolution changes, since D2D reduces the number
of users downloading video through the 4G network,
which favors the stability of the resolution. Finally,
D2D relieves the backhaul links by up to 38%, since
less video flows need to be transmitted over them.

As future work, we intend to evaluate the predictor
in networks with background traffic, since it will affect
the delivery quality. Further, UE mobility will be taken
into account when transmitting data using D2D.
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