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Abstract—Intent-driven network management has become an
important part of autonomous systems in Beyond 5G (B5G)
towards Sixth-Generation (6G) networks, by enabling flexibility in
the interaction among applications, operators and users. Intents
play an important role in the communication of road users like
autonomous vehicles and pedestrians to edge computing services.
As sensor technologies for modern vehicles are cheaper, smaller,
diverse and computing capable, more demand for applications
and services on the road is increasing. A flexible intent inter-
pretation and coordination are needed to deal with the dynamic
environment and constantly changing goals. This paper presents a
proof-of-concept of Zero-touch Network and Service Management
(ZSM) for vehicular communication services, using an Intent
Management Entity (IME) to translate user objectives into ac-
tionable directives. This paper describes a realistic testbed setup
at the Smart Highway, where a Deep Reinforcement Learning
(DRL) algorithm is used to optimize the selection of Roadside
Units (RSUs) for service orchestration. This paper also discusses
the challenges and opportunities of enhancing the IME with
time-based intent coordination, using Artificial Intelligence and
Machine Learning (AI/ML) techniques to estimate the waiting
time and priority in intent coordination. The paper aims to
demonstrate the benefits of ZSM and Intent-driven Management
for vehicular edge computing and B5G/6G autonomous network
management frameworks.

Index Terms—zero-touch service management, intent-driven
management, testbed, Smart Highway, orchestration, automotive
services, vehicular communication

I. INTRODUCTION

Advances in vehicular technology make it possible for
vehicles to assist drivers thanks to the inclusion of sensor
technologies like cameras, Light Detection and Ranging (Li-
DAR), radar and microprocessing capabilities such as On-board
Units (OBUs), which allow autonomous driving or collision
prevention [1]. When data from different sensors are integrated,
this is called sensor fusion, and it enables greater accuracy in
data processing such as object detection for collision avoidance
[2]. Autonomous vehicles can make better and safer choices
by combining different sensors to compensate for the gaps
in those devices that might underperform in certain kinds of
scenarios [3]. As the number of sensors in the car increases,
the chances of making safer decisions increase in real-time
driving circumstances that involve other vehicles [4], people
or unpredicted obstacles like animals on the road. Sensor
technologies are becoming more present in modern vehicles
as they get less expensive and smaller [2]. The information
collected from the surrounding environment by the sensors
generates a large amount of data [1], including the data received
from the nearby edge computing facilities, enabling the users to

access a wider range of applications such as real-time features
and analytics that can support critical services like collision
avoidance as part of smart traffic management which have a
strong impact on the safety of Vulnerable Road Users (VRUs).
The increase of these functionalities in modern vehicles brings
with it a greater demand for computational and communication
resources and faster and more reliable connectivity.

To compensate for the workloads of vehicular technology
applications, vehicular services can be deployed closer to the
users from the cloud and edge computing entities providers
[5], such as Roadside Units (RSUs) that can offload the
computational burden of the user equipment and be supported
by communication standards like Intelligent Transportation
System (ITS-G5) and Vehicle-to-Everything (V2X). An RSU
can also be interconnected to other RSUs and enable the
network to enlarge the scope where vehicular services can
operate. The downside of having these supporting units is the
increment of the complexity of the network, as their services
have to be properly managed optimally and efficiently to
cope with the dynamicity of the demand [5]. Nevertheless,
the available resources at the network edge, where the Multi-
Access Edge Computing (MEC) units are located, may have
limited and scattered resources in the diverse and complex
B5G environment. To meet the real demands, the resources
should be smartly distributed to where they are required. The
coordination of this process among the network services and
the vehicles can benefit from Zero-touch Network and Service
Management (ZSM) techniques, which can be a collection
of services that together offer functionalities for autonomous
network and service management [6].

According to the European Telecommunications Standards
Institute (ETSI) ZSM Group [7], intent-based interactions
in autonomous network management frameworks are part of
ZSM, and the goals and expected behavior are intent-defined as
agnostic instructional language that enables services to interact
with each other independently of the diverse technologies
from the vendors, providers and operators. The management
of intents includes the interpretation of the requests but also
an optime coordination for its fulfillment to satisfy the users’
Quality of Service (QoS). As the ZSM reference architecture
[8] is service-based, intent-driven management has to perform
cooperatively like an Intent Management Entity (IME) within
the ZSM framework to handle the intent requests from the
Management Service (MnS) producer who is the intent owner,
and then generate the intent requests (MnS consumer) to
a further level across the domains. IMEs can also contain
knowledge-driven decision-making processes [7]. In practical
terms, we designed a ZSM-based Network Orchestration Proof-
of-Concept (PoC) for vehicular communication services, where
decision-making processes optimize the consumption of net-



Fig. 1: ZSM-based Vehicular Network Orchestration PoC at the Smart Highway testbed.

work resources to manage and ensure demand stability. The
PoC runs in a realistic environment spanning 4km of the
Smart Highway testbed in Antwerp, Belgium, as presented in
Figure 1. A basic intent interpretation is used in the current
model, which motivates our goal to expand the capabilities of
the current PoC to optimally coordinate the interpretation and
execution of intents. To accomplish this, we propose an IME
in charge of the interpretation that can be used by different
intent owners like demanding users/operators or applications
placed in a high-level domain and another for the coordination
of the intents at the domain where the decision-making process
takes place. Currently, a try/fail approach is used to ensure the
fulfillment of the request in case of failure but with a pre-
defined number of trials based on priority. We also aim to
reduce the consumption of resources dedicated to coordinating
the execution of the intents, by the use of time-based criteria to
reduce the overflowing queues [9], where waiting intents can
be sorted by the use of advanced prediction methods that are
based on Artificial Intelligence and Machine Learning (AI/ML)
techniques.

II. ZSM-BASED NETWORK ORCHESTRATION POC
The deployment of a PoC aims to test and validate Zero-

touch services within the realistic conditions provided by
the Smart Highway testbed, which stands as a Cooperative
Intelligent Transport System (C-ITS). In this testbed, we make
use of four out of seven RSUs that are available from a section
of the E313 highway in Antwerp, Belgium. In every edge
unit, wireless communications are provided by Cohda MK5
and MK6c over ITS-G5 and Long-Term Evolution (LTE) with
a PC5 interface in the band 5.9GHz and a Uu interface at
3.5GHz and a Peplink 5G1. For computing processing, General
Purpose Computing Units (GPCUs) are provided by Intel Xeon
8 Cores and 32 GB RAM. Energy management is possible
through a Power Control Unit that is available in the RSU

1Peplink 5G: https://www.peplink.com/technology/what-is-5g-with-peplink/

components. An additional mobile unit is deployed in a BMW
X5 xDrive25d LO provided with similar equipment as the
RSUs. The aforementioned devices that are contained in the
computing units, supply facilities for sensing, hosting services
and communication infrastructure to collect data in a highly
realistic environment. The hosting services are containerized
pods, powered by Kubernetes and implemented throughout the
RSUs. These services can be accessed remotely during tests
and experimentation for monitoring computing and network
resources, and then the orchestration of vehicular services. To
exchange the metrics data from the computing units we used
Zenoh2 as a publish/subscribe protocol that allows the services
to retain an optimal level of time and space efficiency, thanks
to its low latency and high throughput.

The Zero-touch services implemented in the Smart Highway
testbed are enhanced by AI/ML-based functions and algo-
rithms, enabling the orchestration service by improving the
decision-making process. The intent-based interaction among
monitoring, decision-making, and management services intro-
duces flexibility, enabling a scalable and expandable range of
solutions. Unlike relying on static pre-defined actions such
as service scalation or termination, this approach enhances
adaptability within the system. In Figure 1, our PoC setup
consists of i) 3 RSUs to host vehicular network services, ii)
1 RSU for metrics collection and orchestration of the services,
iii) 1 RSU for UE emulation to send requests and induce
stress over the available services for testing purposes and iv)
1 The mobile OBU collects metrics from the rest of the RSUs
to measure End-to-End (E2E) latency of the services, that is
correlated to the consumption of computing resources like CPU
and memory, which is an indicator of much workload a RSU is
taking. All the RSUs have communication capabilities between
them. The dynamic discovery features enabled by Zenoh enable
the automatic subscription of the RSUs to the orchestration
hub when the datasets of metrics are published. These datasets

2Zenoh: https://zenoh.io/



Fig. 2: ZSM-based Network Orchestration Flow.

include information about the origin entity like hostname and
IP address. The origin data is sent and managed by the
subscription pool which makes them available to the rest of the
applications as shown in Figure 2. No manual configuration is
needed before the execution of the PoC, providing flexibility
to the setup and real-time feedback from the running services.

The execution of the PoC proceeds as follows displayed in
Figure 2:

1) The publisher module of the hosting RSUs sends status
values about performance status such as CPU load and
Memory use. The dataset also hosts identification prop-
erties.

2) The RSUs subscription pool includes the newly arrived
RSU identity and shares it with the rest of the applica-
tions involved in the PoC.

3) The OBU performs E2E latency checks among the RSUs.
4) The decision-making algorithm processes the datasets

sent by the publisher module from the RSUs and the
OBU, making choices on the most suitable RSU based on
the availability of its resources. The resulting decisions
are stored and used to train a Deep Reinforcement
Learning (DRL)-based decision-making algorithm.

5) The stress-inducing scheduler application sends requests
to a random RSU that is periodically selected from the
manifest shared by the subscription tool. This task is per-
formed to emulate the behavior of the dynamic changes
in demand of vehicular network resources, which trigger
actions in the orchestration operations for balancing and
adjusting the running services.

The obtained output decisions in a previous rules-based

decision-making algorithm were used for training a DRL-based
algorithm, that later is integrated as a Zero-touch service and
is further consumed by the orchestrator. The RSUs are part
of the distributed edge computing within the testbed under a
dynamic and complex environment, where DRL has become
a viable choice for decision-making processes, demonstrating
its effectiveness in learning optimal strategies within complex
network scenarios and adapting to changes in recent years
[10]. In a recent study that focused on our decision-making
algorithms, the performance of the trained DRL algorithm has
been recently validated through simulation and experimentation
against a rules-based algorithm and it is in the works of
integration with the current PoC. To tackle the issue of RSU
selection a Deep Q-Network (DQN) algorithm was customized,
which is a widely recognized DRL approach. This is significant
for users as it directly impacts the availability and performance
of vehicular services during periods of saturation caused by
ineffective demand management, emphasizing the need for
an efficient RSU selection. The decisions are then expressed
declaratively through an intent, incorporating the identity of
the RSU with superior resource availability. This is essential
for optimizing both network and service performance. In our
current setup, we aim to expand the current basic approach
of expressing and interpreting the intents, which reflects the
expected outcome instead of a detailed instructional set for the
solution.



III. INTENT MANAGEMENT ENTITY FOR INTERPRETATION
AND COORDINATION

A. Intent Management Entity
An IME component is essential for the implementation of

Zero-touch Service (ZTS) within the PoC framework. It plays
a crucial role in translating high-level objectives into actionable
directives for the network infrastructure. The intricate nature of
ZTSs, designed for automated management of diverse network
functions, demands mechanisms to interpret and execute user
intentions. IMEs have a knowledge base that contains the
intent ontology [7] and are also found to be queue-based as
the requests are coordinated based on priority and availability
of resources [2]. The lifetime of an intent can depend on its
priority, which determines the number of tries for its fulfillment.
These trial/error approaches tend to increase the consumption
of resources as the number of attempts and timing are prede-
fined before they are queued along with the rest of the requests
and consequently are fixed. These approaches can benefit from
a more accurate determination of the lifetime of the intent
by extending the criteria for priority classification. Machine
reasoning plays a key role in intent management, with its ca-
pability to understand abstract concepts from diverse domains
and provide precise, specialized conclusions based on precedent
as it can contribute to the quantification of risk and uncertainty,
making decisions in circumstances of conflicting goals and new
situations [7]. In this section, we address two crucial features
of IME: intent interpretation and intent coordination. In the
case of interpretation operations, they are mainly located in
the first line of the ZSM architecture (See Figure 1) where the
interaction of the users or operators is made through high-level
instructions. Regarding intent coordination, it can be located
near the inner domains of the ZSM architecture, managing
the resulting outputs of the decision-making processes where
more intents are generated with more specific instructions and
targets.

B. Intent-based interpreter
Intents can serve various purposes, such as configuring

or overseeing the performance of the network or service,
and more. To cope with these purposes, an enhanced intent
interpreter algorithm needs to be designed to provide an
interface that receives and delivers instructions from high-
level intents and compiles them into more detailed and tech-
nically elaborated intents that can be used by the destined
orchestrators/controllers that will be applying changes and
configurations to comply with requirements from the intent.
Following the specifications from ETSI [7], the design of
the intent interpreter should ensure that intents are expressed
in terms of the intent owner, which does not specify how
the desired service is to be realized. A pre-process can be
employed to deconstruct natural language intents where the
intents are formatted into the structure that is expected by
the IME. These intents are later submitted in the network as
standardized information objects. Among related works that
propose different approaches for the development of intent
interpreters, a more generic proposal comes from McNamara
et al., as they present a flexible interpreter for intent realization
[11]. Firstly, they identify a mathematical and a model-based
as a means of representation for intents. Secondly, a flexible
interpreter takes care of the aforementioned representations
through the following stages: functionality templates, intent
matching and translation.

C. Intent coordination

Beyond 5G (B5G) and Sixth-Generation (6G) future net-
works are essentially intent-driven and proper coordination of
the realization of the intents contributes to their success and
eventually the performance of autonomous network manage-
ment frameworks. In the search for practices in intent coordi-
nation, we have found increasing attention to the subject from
researchers and network operators as well. In this subsection,
we present and discuss different approaches used to manage
the execution of intents.

In related work, Perepu et al. [12] propose a method based
on Multi-agent Reinforcement Learning (MARL) for coor-
dination and conflict management among loops to achieve
intent-based management. Following this approach, they aim
to tackle the challenges of the lack of compute optimization
at runtime in dynamic environments where the goals change
continuously. By solving the conflicting intents, the MARL
agents can enable cooperation in the loops by prioritizing the
important Key Performance Indicators (KPIs) and reducing
human intervention. The paper concludes with the validation
of the proposed MARL model through experimentation, where
the results showed that MARL-based agents can learn the Plan
to Coordinate to achieve an optimal global trade-off during the
training phase, enabling them to effectively handle conflicts
and encourage cooperation to maximize the achievement of
the global goal. TianZhang He et al [13], propose an approach
to orchestrate networking and computing resources based on
user requirements while filling the gaps in existing Vehicular
Edge Computing (VEC) applications. This involves developing
necessary algorithms that take into account both the computing
and networking needs of the applications. As a result of their
work, two algorithms for intent resolution were designed.

Priority-Aware Intent Installation: This algorithm periodi-
cally checks the intents associated with a suspended event. If
an intent cannot be satisfied, the algorithm switches the state
of the event to ’Failed’ and schedules it for reinstallation, with
a threshold of 3 attempts.

Location-Aware Mapping: Consists of a mapping microser-
vice dedicated to determining the best path for allocating
virtual nodes by taking location contains from the intents. The
algorithm later sorts the searched nodes based on the depth and
the distance, which is particularly useful for mobile end-users
like vehicles and VRUs where the location of the virtual node is
expected to change in time. This would minimize the impact on
node reallocation in dynamic environments that imply mobility-
related scenarios.

In the case of the Priority-Aware Intent Installation algo-
rithm, the retry threshold can be dynamically adjusted based
on current edge conditions. In dynamic environments, a low
threshold may lead to a high failure ratio, while a high threshold
can increase intent reinstallation and processing time. Addi-
tionally, a larger retry threshold may enhance the acceptance
rate for high-priority intents. Retry attempts are traditionally
set at a fixed number, such as three tries. However, there is an
opportunity for more intelligent determination of retry parame-
ters, including timeouts, by incorporating AI/ML support. This
would allow for dynamic adjustments based on rules rather than
relying solely on fixed numerical values, although is not exempt
from challenges like extra computing efforts for prediction and
mapping.



Fig. 3: Intent-driven threshold coordination approaches.

D. Time-based coordination in intent-driven management
If intent processing is not optimized, then the expected effect

over performance would be contradictory. Instead of trying for
re-compilation, the intent manager stands by for notification or
for a queue of executions for when the conditions are suitable.
The monitoring/update application can collect the requests and
give them a timeout that can be pre-set or determined based
on AI/ML-based time estimation. In Figure 3 we compare two
different approaches regarding execution threshold in intent-
coordination. AI/ML techniques can be used to prioritize orders
in a queue by implementing a priority queue system. The
prediction tool that can be used to estimate when a particular
service is going to be executed based on a queue of pending
actions and the current status of available resources is a queue
management system. By incorporating an order queuing tool
that specifically estimates waiting times into intent coordina-
tion, we can achieve more accurate sorting of pending intents.
This enables the determination of estimated response times,
ultimately reducing costs associated with holding unnecessary
resources. The goal is to identify a suitable prediction tool
within AI/ML that can estimate when a specific service will be
executed based on a queue of pending actions and the real-time
status of available resources. This approach aims to optimize
service execution by providing accurate estimates based on
dynamic factors, thereby improving overall efficiency in the
queuing system.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduce the performance of IMEs within
the context of a ZSM and the crucial role these entities play
in translating user objectives into actionable directives for
optimal network management. We also described a PoC of
a ZSM-based framework at the Smart Highway testbed that
showcased the practical implementation of a ZSM framework,
incorporating a DRL-based decision-making algorithm for ve-
hicular network service orchestration. We also discussed the
goals of expanding the PoC capabilities by the integration
of IMEs enhanced with time-based intent queuing coordi-
nation. As part of future work, a systematic assessment of
the proposed time-based intent coordination, in conjunction
with the previously discussed coordination approaches, will be
undertaken. This evaluation aims to provide valuable insights
into the effectiveness and performance of time-based intent

coordination, offering a nuanced understanding of its impact on
the overall orchestration and management of vehicular network
services within the evolving landscape of advanced network
management frameworks.
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