
Time-Sensitive Networking Experimentation on
Open Testbeds

Gilson Miranda Jr.∗†, Esteban Municio∗, Jetmir Haxhibeqiri‡,
Daniel F. Macedo†, Jeroen Hoebeke‡, Ingrid Moerman‡, Johann M. Marquez-Barja∗

∗IDLab - imec, University of Antwerp, Belgium
‡IDLab - imec, Ghent University, Belgium

†Universidade Federal de Minas Gerais - Computer Science Department, Brazil
{gilson.miranda,esteban.municio,johann.marquez-barja}@uantwerpen.be

{jetmir.haxhibeqiri,jeroen.hoebeke,ingrid.moerman}@ugent.be
damacedo@dcc.ufmg.br

Abstract—Time-Sensitive Networking (TSN) is vital to enable
time-critical deterministic communication, especially for applica-
tions with industrial-grade requirements. IEEE TSN standards
are key enablers to provide deterministic and reliable operation
of Ethernet networks. However, much of the research is still done
in simulated environments or using commercial TSN switches
lacking flexibility in terms of hardware and software support.
In this work, we evaluate two different Cloud testbeds for TSN
experimentation, analyzing their hardware features, the influence
of the testbed management infrastructure, and the data plane
performance. Furthermore, we present a prototype of a modular
Software-Defined Networking (SDN) controller that facilitates
the deployment of Linux-based TSN networks. We identify and
discuss the controller modules and evaluate its feasibility by using
it to deploy TSN networks on different testbeds. Finally, we
provide insights for researchers interested in experimenting with
TSN features on open Cloud testbeds and discuss the features
and limitations that we found during our experiments.

Index Terms—TSN, Experimentation, Network Programmabil-
ity, SDN

I. INTRODUCTION

In recent years, the IEEE Time-Sensitive Networking (TSN)
Task Group has been developing a set of standards to enable
reliable and deterministic communication on top of IEEE
802.1 networks [1], [2]. IEEE TSN development evolved
from the Audio-Video Bridging (AVB), widening the scope to
support the broad requirements of automotive and industrial
networks. These standards enable Ethernet-based networks
to support the coexistence of time-critical and best-effort
flows, providing isolation and preventing best-effort flows
from affecting the performance of the time-critical ones. This
way, an Ethernet-based TSN network can carry critical traffic,
e.g., from control applications in an Industry 4.0 context, while
also carrying best-effort traffic from administrative sectors of
the industry, reducing costs and deployment complexity [3].

To further evolve TSN standards and effectively implement
the proposals on real networks, it is crucial that researchers in
industry and academia have access to resources for develop-
ment and experimentation with TSN features. Although plenty
of research advances can be achieved through simulation [4],
[5], the implementation and validation using real hardware in

realistic conditions is paramount to validate simulation results
and push further the technology development.

Fortunately, testbed facilities support researchers by pro-
viding very flexible and reconfigurable environments. There
are currently several testbeds on different domains, such as
Cloud [6], Internet of Things [7], and Smart Highways [8].
These testbeds are excellent means to validate and reproduce
the performance of new technologies in realistic conditions.
However, for experiments encompassing TSN features, some
requirements in terms of hardware support by Network El-
ements (NEs) and testbed infrastructure are necessary. For
example, the network adapter must support hardware times-
tamping of packets for higher synchronization accuracy with
Precision Time Protocol (PTP). Another case is the Time-
Aware Scheduling (TAS), which requires network adapters
with multiple queues, as well as driver support.

In this paper, we evaluate two Cloud testbeds and their
suitability for TSN experimentation. We focus on a basic set
of features that offer support for time synchronization, traffic
scheduling, and traffic filtering. For resource management and
network configuration, we present and develop a prototype of
an Software Defined Networking (SDN) controller to perform
TSN Centralized Network Configuration (CNC). We identify,
describe, and implement the main modules that facilitate the
deployment and management of a TSN network. We deploy
TSN networks with similar topologies on different testbeds and
evaluate their performance in terms of time synchronization
accuracy and data plane performance. We also compare the
features supported by the testbed nodes and discuss their
advantages and limitations for TSN experimentation.

The paper is organized as follows: Section II gives a
brief overview of TSN standards. Section III describes the
architecture of our TSN controller. Section IV describes the
deployment of TSN networks on two different testbeds, de-
tailing the features and issues faced in each case. Section V
presents results achieved on each testbed. Section VI brings
the main takeaways and lessons learned during the execution
of this work, which can help other researchers conducting ex-
perimental TSN research using open testbeds. Finally, Section
VII concludes this work and presents future directions.

II. BACKGROUND

The TSN standards can be categorized into four main pillars
[9]: time synchronization; bounded low latency; reliability; and
resource management. Time synchronization is specified by
IEEE 802.1AS standard [10], and can be achieved through
PTP. TSN nodes usually perform actions based on strict
deadlines or time intervals, and PTP allows all nodes to have
a common sense of time. IEEE 802.1Qbv [11] and IEEE
802.1Qbu [12] are the main standards related to bounded low-
latency communication. The former leverages network syn-
chronization to coordinate scheduled communications using
TAS. The latter defines frame preemption, allowing frames of
lower priority flows to be interrupted during transmission in
favor of frames of higher priority flows.

For improving reliability the IEEE 802.1Qci standard [13]
provides enhancements for flow filtering and policing, allow-
ing traffic to be directed to specific queues on each bridge. This
enables precise coordination and isolation of traffic flows. The
IEEE 802.1CB [14] also improves reliability through frame
replication and elimination, i.e., using redundant transmission
of frames through separate paths between source and desti-
nation. Finally, for resource management, we highlight IEEE
802.1Qcc [15], which defines protocols for the configuration
of flow reservation and their requirements. Three configuration
models are defined on 802.1Qcc:
• Fully distributed: in this model the flow specifications

from the end stations are propagated to the NEs using a
distributed protocol. Bridges in the path between sender and
receiver are configured based only on their local knowledge.

• Centralized Network/Distributed User: this configuration
model has a CNC entity, with global knowledge of the
network topology and configuration of devices. Bridges on
the edges relay flow specifications/requirements received
from the end stations to the CNC.

• Fully centralized: this model includes a Centralized User
Configuration (CUC) entity, aimed at cases in which sig-
nificant configuration of the end stations is required. Flow
characteristics and requirements are specified through the
CUC directly to the CNC.
In this work, we will focus on the fully centralized model,

which gives us more control over all the NEs. Flow charac-
teristics and requirements are provided to the CNC through
a CUC API. Synchronization, schedules, and other configura-
tions are specified through the CUC API using auxiliary tools
and applied to NEs by the CNC. In the next section, we detail
the architecture of the CNC and the agent module.

III. CNC ARCHITECTURE FOR TSN
To set up and manage a TSN network, many software com-

ponents must be carefully configured and coordinated across
all NEs. Among them, we highlight the PTP synchronization
service, the scheduling configuration, and traffic filtering and
policing. However, other functionalities such as real-time data
plane and control plane monitoring are also useful. Therefore,
we designed a CNC architecture with a minimal set of modules
to assist the deployment of TSN networks on Linux-based

TSN Controller
Southbound Interface

REQ REP SUB

ZM
Q

Internal Interface

Dashboard

DB

Control Loop
Scheduler

CUC API

(a)

Southbound Interface

REQ REP SUB

ZM
Q

Telemetry Manager

Operating System

Resource
Monitor

PTP
Manager

Schedule
Manager

Monitoring signaling
Control signaling

(b)

TSNC TSNA

(c)

(1) Load cfg.
(2) Open socket

Scan resources (3)

Announce (4)

Apply cfg. and
start services (6)

(5) Announce reply

(7) Set new cfg.

Confirm new cfg. (8)

(10) Acknowledgment

Notify topology or
resource change (9)

Publish telemetry
data (11)

CNC

TSNA

Figure 1: CNC architecture and communications diagram

devices. Our architecture is composed of a central node assum-
ing the roles of CNC and CUC. We simplify the description
focusing on the CNC architecture and its counterpart, the TSN
Agent (TSNA), that runs in the NEs.

Figures 1a and 1b show the internal modules of the CNC,
and the TSNA, respectively. The main functions of the CNC
are carried out by the TSN Controller (TSNC). Figure 1c
shows the messages exchanged between the TSNC and TSNA
during operation. The TSNC is initialized loading a configu-
ration file with the basic network configuration (1), such as IP
addresses, initial schedules, PTP roles and interfaces. Each NE
is identified by an Unique Identifier (UID). The TSNC opens
a socket (2) and listens for incoming connections of TSNAs
started at the NEs. A TSNA initializes scanning the node
resources (3), e.g., interfaces, timestamping support, number
of queues, and sends an Announce message (4) to the TSNC
informing the node UID, node type (end-node or bridge), and
its resources. The TSNC replies to the announce (5) by sending
the node’s configuration specified in the local configuration
file, and the TSNA applies the received configuration to the
node and starts TSN services such as PTP (6). The TSNC
can send messages with new configurations to the TSNA (7),
which replies with a confirmation of whether the configuration
was applied or an error occurred (8). Similarly, the TSNA can
notify topology or resource changes (9), to which the TSNC
replies with an acknowledgment (10).

Communication between TSNC and TSNA occurs through
the Southbound Interface. For simplicity and faster deploy-
ment, we used ZeroMQ (ZMQ) sockets for communication,
with messages encoded in JavaScript Object Notation (JSON).

However, the ZMQ sockets can be replaced by NETCONF
implementations in future versions, following the current stan-
dardization trend for TSN configuration [15]. The Southbound
Interface contains three types of ZMQ sockets. A REQ socket
is opened for each TSNA that connects to the TSNC, and
allows the TSNC to make requests to the TSNA, for example,
to set a new configuration (messages (7) and (8) of Figure 1c).
A global REP socket is used to reply to requests coming from
TSNAs (messages (9) and (10)). Finally, a SUB socket works
as a subscriber for telemetry data (11). Telemetry data (e.g.,
synchronization offset) are transmitted using publish/subscribe
mode to the TSNC, and stored in the database.

The Southbound Interface of the TSNA has the counterparts
of the three sockets. A REQ socket is used to initiate transmis-
sions to the TSNC (messages (4) and (9) of Figure 1c). The
REP socket listens for transmissions coming from the TSNC
(message (7)), and the PUB socket for telemetry. We use
pub/sub to transmit information that is not crucial for network
operation, such as long-term monitoring of synchronization
offsets, while topology, link speeds, or address changes are
transmitted immediately using the REQ socket.

In the CNC we define the Control Loop module, coupled
with a Scheduler. The control loop verifies if the achieved
performance of the flows corresponds to the specifications
received from the CUC API. When a new flow is registered
through the CUC API, the control loop runs a scheduling
algorithm to support the new flow and applies the new network
configuration through the TSNC. The information for schedule
generation (e.g., network topology, link speeds) is obtained
through the TSNC’s Internal Interface. Schedules and filtering
rules are applied by the control loop on NEs via commands
to the Internal Interface of the TSNC.

We define a Dashboard module for network monitoring and
alarms. Telemetry data published by TSNAs are stored in the
database, and the Grafana1-based Dashboard module allows
the operator to configure screens for statistics visualization
and set up alarms to notify about network issues. For example,
an operator may set an alarm if PTP reports a synchronization
offset higher than a threshold, allowing troubleshooting actions
to be taken to avoid further issues.

For network operation, the CNC offers the CUC API as
a centralized management interface. NE configurations can be
set based on their UIDs. Flow characteristics and performance
requirements are also specified using this API, realizing the
fully centralized configuration model. Access permissions are
stored in the database and the CUC API enforces them when
a request is issued either to the control loop or directly to the
TSNC (via Internal Interface).

On the TSNA side, the Schedule Manager applies the
schedules received from the TSNC, and it also filters policies
to direct traffic to the correct queues. This is performed
using the Traffic Control (TC) tool for Linux, specifically the
tc-taprio2 module that implements the Time Aware Priority

1https://grafana.com/
2https://man7.org/linux/man-pages/man8/tc-taprio.8.html

Shaper (TAPRIO). The basic specification of a schedule con-
tains a Gate Control List (GCL), a base-time that indicates
when the schedule starts, and a set of schedule entries that
indicate which gates (or queues) will be active (or transmitting)
at a given moment of a cycle. The example below shows a
configuration with a base-time and three schedule entries. The
first entry allows traffic mapped to queue 1 to be transmitted in
the first 200µs of the cycle, the second entry gives 100µs for
traffic in queue 3, and the third entry gives 200µs for traffic
in queues 1 and 2 (gate mask 0x03).

base-time 1528743495910289987
sched-entry S 0x01 200000
sched-entry S 0x04 100000
sched-entry S 0x03 200002

The PTP Manager controls the synchronization service,
based on linuxptp3, according to the configuration parameters
received from the TSNC. A synchronization offset between
the NE and the PTP GrandMaster (GM) is reported by
linuxptp and collected by the PTP Manager. This information
is delivered to the Telemetry Manager, which may publish
to the TSNC if configured to do so. The Telemetry Manager
can be configured to publish aggregated statistics of this offset
(average over several minutes) or only when the offset is above
a threshold, to reduce monitoring traffic. Lastly, the Resource
Monitor constantly checks the state of interfaces, their speed,
and the status of linuxptp processes, immediately informing the
TSNC if any changes occur on these elements. The objective is
to quickly inform the TSNC about topology changes, or failure
of crucial processes, so recovery measures can be taken.

IV. DEPLOYMENT OF TSN NETWORKS

TSN networks require specialized hardware and software
support for some functionalities. For the scope of the experi-
ments in this paper, the main requirements are hardware-level
packet timestamping for PTP synchronization and multiple
transmission queues for TAPRIO. It is possible to configure
nodes without hardware timestamping, however, PTP syn-
chronization will use software timestamping, taking longer to
converge and usually presenting higher synchronization errors.
The multi-queue and timestamping support are required not
only in the hardware level but also in software.

We set up two distinct experiments on two testbeds: Virtual
Wall 2 [16], and CloudLab Utah [17]; using topologies as
similar as possible, in order to compare the characteristics
of both testbeds. We configured all nodes on both exper-
iments with Ubuntu 20.04.3 LTS, Linux kernel v5.4.0-91,
iproute2 v5.5.0, and linuxptp v3.1.1. On Virtual Wall we used
the pcgen03-5p nodes equipped with Intel(R) Xeon(R) CPU
E5645 with 24 threads and 24GB of RAM. On CloudLab
we used the d6515 nodes equipped with AMD EPYC 7452
CPU with 64 threads and 128GB of RAM. The nodes had
different configurations of network adapters, with CloudLab
nodes having three different models on each selected node.

3http://linuxptp.sourceforge.net/

Table I lists the network adapters on each testbed. The first
column shows interface names returned by the Operating
System (OS), the second column indicates the support for
hardware timestamping. The third and fourth columns show
the number of transmission (TX) and reception (RX) queues,
reported by the ethtool application. The fifth column shows
the maximum link speeds of each card, and the last column
shows the controller model.

Table I: Network adapters on testbed nodes selected

Interface HW TS TXQ RXQ Speed Controller
Virtual Wall

eth* yes 8 8 1Gb/s i82576
Cloudlab

ens1f*np* no1 74 74 25Gb/s BCM57414
eno* yes 4 4 1Gb/s BCM95720

ens3f* yes 1262 632 100Gb/s MT28800
1Limited support due to driver version.
2Queue numbers depend on the number of CPU logical cores.

All Virtual Wall nodes that we selected have two Intel
82576 network adapters, one with two ports and the other
with four ports. One port is allocated for testbed management
plane, leaving the other 5 available for connection between
nodes. The interfaces have hardware timestamp support, 8 TX
and RX queues, and 1Gbps line speed. The nodes selected
on CloudLab have three different adapters, each with two
ports. The interfaces listed as ens1f0np0 and ens1f1np1 use the
Broadcom BCM57414, which offer line speeds of 25Gbps, and
report 74 TX and RX queues. Although the network adapter
documentation indicates support for hardware timestamping
and IEEE 802.1AS synchronization, ethtool and linuxptp were
not able to identify such support, limiting the capabilities of
those interfaces for PTP synchronization. The other two inter-
faces, with naming pattern eno*, used Broadcom BCM95720
controllers. These interfaces had a maximum speed of 1Gbps,
and hardware timestamping support. The controller documen-
tation indicates support for 17 RX queues and 16 TX queues,
but from the OS, we were able to enable at most 4 RX and TX
queues. The last row of the table details the ens3f0 and ens3f1
interfaces, which use the Mellanox MT28800 controller. These
interfaces have speeds of 100Gbps, hardware timestamping
support, and a number of queues according to the number of
logical CPU cores. As we used nodes with 64 cores, the OS
reported 63 TX and 126 RX queues for those interfaces.

The topology used for the tests is shown in Figure 2. In
CloudLab, despite having 6 network ports (1 reserved for
testbed infrastructure), we were unable to create more than 3
links per node. Therefore, for the CloudLab setup we used a
virtual shared link to connect PC1, PC3, and SW1, and another
virtual shared link to connect PC2, PC4, and SW3. In those
cases, the link of a single port is split into more links to the
connected nodes. In Virtual Wall we were able to use all the
network ports of the nodes. Figure 2 also indicates the traffic
generated during the scheduling tests. We generate UDP traffic
with two test applications from PC1 to PC2 (UDP App 1 and

UDP App 1
UDP App 2

iperf

PC1

PC3

SW1 SW2 SW3

PC2

PC4

CNC
Figure 2: Topology used for the experiments

UDP App 2) and use iperf34 to generate TCP traffic from PC3
to PC4. In both experiments, we configured SW1 as PTP GM,
SW2 and SW3 as PTP Boundary Clock (BC), and the PCs as
PTP slaves. The CNC was deployed in a separate node, with
a logical control link to all other nodes.

V. EXPERIMENTAL RESULTS

We deployed the two experiments on Virtual Wall and
CloudLab testbeds, seeking to achieve topology and node con-
figurations as similar as possible. We evaluated the function-
alities of precise time synchronization and traffic scheduling
running similar tests in both experiments.

A. PTP Synchronization Accuracy

Our first analysis regards the PTP synchronization accuracy
over 30 minutes of execution. We disregard the first two
minutes after initializing PTP to allow all nodes to reach a
steady-state of synchronization. Table II shows the absolute
PTP synchronization offset (error) between each node and the
GM, in each testbed. For each case, we show the median offset,
the 90th, and 99.9th percentiles. We observed better synchro-
nization accuracy on CloudLab nodes, with median offset up
to 26 ns, while on Virtual Wall nodes the median offset was
up to 416 ns. The testbed infrastructure contains switches or
routing equipment to interconnect nodes. Such equipment may
introduce delays and jitter in the traffic between the nodes
of the experiment, affecting the PTP operation. Nevertheless,
both testbeds offer sub-microsecond synchronization accuracy
most of the time, allowing reliable experimentation with
schedules having slots in the range of tens of microseconds.

Table II: Absolute PTP synchronization offset (in ns)

Median 90th 99.9th Median 90th 99.9th
Node Virtual Wall CloudLab
SW2 218 572 1061 12 30 604
SW3 305 738 1535 16 39 935
PC1 192 478 1020 16 44 547
PC2 394 984 1795 26 68 1352
PC3 220 520 1069 12 30 562
PC4 416 998 5624 23 58 1398

B. Traffic Scheduling

The scheduling experiments demonstrate the use of multi-
queues and traffic policing to perform fine-grained control
over traffic behavior. We defined the three schedules shown

4https://iperf.fr/

in Figure 3 for these experiments. Each square represents a
slot of 250µs. The number in each square indicates the active
queue. We also defined slots with all queues inactive (crossed
squares), which can represent slots allocated to other traffic
classes. Best-effort traffic is directed to queue 0, including
communication between TSNC and TSNAs, and PTP packets.
Iperf traffic was allocated to queue 1, while UDP Application
1 was allocated to queue 2, and UDP Application 2 allocated
to queue 3. The schedules were applied through commands to
the CUC API on egress ports of nodes PC1, SW1, SW2, and
SW3, considering the direction of traffic shown in Figure 2.

Figure 4 shows the results obtained on Virtual Wall. The top
graph shows the 99th percentile of one-way delay of packets
from the UDP Apps. The UDP sender transmits a packet
every 1 ms. The bottom graph shows the TCP throughput
achieved with iperf3. Schedule 1 allocates one slot for each
flow, resulting in 5.75 ms delay for the UDP Apps and 5.5
MB/s throughput for iperf. Schedule 2 allocates another slot
for iperf, doubling the throughput to 11 MB/s. Schedule 3
replaces the slot from queue 1 with a slot for queue 2, giving
the additional slot to App 1. We can observe the simultaneous
change of behavior in both flows, reducing the delay of App
1 to 3.5 ms, and reducing iperf throughput to the initial 5.5
MB/s. Lastly, we apply Schedule 1 again and observe the same
behavior from the start of the experiment.

Schedule 1

Schedule 2

Schedule 3

1 2 30 0 0 0 0 0

1 2 30 0 0 0 0 01

1 2 30 0 0 0 0 02

Figure 3: Schedules used for traffic control experiments

3.5

4.0

4.5

5.0

5.5

O
ne

-w
ay

de
la

y
(m

s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

App 1
App 2

0 50 100 150 200
Execution time (s)

0.0

2.5

5.0

7.5

10.0

TC
P

Th
ro

ug
hp

ut
(M

B/
s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

iperf3

Figure 4: Scheduling on Virtual Wall testbed

Figure 5 shows the results of the same experiment on
CloudLab. Due to the higher speed of network adapters, we
observed a significantly higher throughput using iperf, starting
at around 80 MB/s and reaching up to 175 MB/s when
applying Schedule 2. We also see a slight decrease of one-way

delay of UDP Apps as the propagation of packets through the
links can occur much faster. Despite that, we observed a few
peaks of delay in this deployment. We suspected that these
peaks were caused by the shared link created by the testbed
to interconnect SW3, PC2, and PC4. The egress port of SW3
(on which we apply the schedules) is logically split into two
links to connect PC2 and PC4. After the packets egress from
SW3 port, packet queuing or aggregation policies are not under
our control, and the flows might be affected by the testbed
configuration. We performed an additional experiment where
flows do not converge to a common link. We used SW3 as
end node, taking the roles of PC2 and PC4 on receiving traffic
from PC1 and PC3. The result of this test is shown in Figure
6, in which we omit the iperf results due to space limitation.
We observed that the delay spikes did not occur and one-way
delay was more deterministic.

3

4

5

6

7

O
ne

-w
ay

de
la

y
(m

s)
Schedule 1 Schedule 2 Schedule 3 Schedule 1

App 1
App 2

0 50 100 150 200 250
Execution time (s)

75

100

125

150

175

TC
P

Th
ro

ug
hp

ut
(M

B/
s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

iperf3

Figure 5: Scheduling on CloudLab testbed

0 50 100 150 200 250

3.0

3.5

4.0

4.5

5.0

O
ne

-w
ay

de
la

y
(m

s)

Schedule 1 Schedule 2 Schedule 3 Schedule 1

App 1
App 2

Figure 6: Scheduling on CloudLab testbed ending on SW3

VI. MAIN TAKEAWAYS AND LESSONS LEARNED

Experimental research with TSN features requires special-
ized support in hardware and software. Fortunately, different
testbeds offer support for such research, allowing experimental
validation of theoretical works. We list below a few takeaways
and lessons learned during this work that may help other
researchers when setting up their experiments:

• Preliminary feature test: before setting up experiments
with several nodes, it is important to verify hardware and

software support for the desired features. As we observed,
it may occur that a feature is supported by hardware but
not fully supported in software. Based on preliminary
tests, the user can better plan the experiments or necessary
software upgrades before setting up larger deployments.

• Synchronization: the supporting infrastructure of the
testbeds may affect synchronization accuracy. During
initial tests in Virtual Wall, we configured the Controller
as PTP GM, and observed higher synchronization offset
on some nodes. Changing the GM to SW1 offered better
overall synchronization.

• Effect of shared logical links: testbeds allow creating
logical links that share a single port to overcome the
limitation of physical ports and offer more flexibility
on network topology. However, the user might have no
control over such links (e.g., over frame aggregation or
queuing policy). When running experiments with TSN
scheduled traffic, the use of such shared links might
influence the intended deterministic behavior of flows.

VII. CONCLUSION

TSN standards are enablers for achieving reliable, determin-
istic, and bounded low-latency communications over Ethernet.
In this paper, we demonstrate the use of Virtual Wall and
CloudLab tesbeds for TSN experimentation. We introduce an
architecture for a TSN controller composed of a CNC and
a TSN Agent that helps with the fast deployment of TSN
networks. We present a qualitative analysis of the features
in both testbeds for TSN experimentation, and also show
qualitative results of basic TSN features – synchronization
and traffic scheduling. We show how the TSN standards can
be used to perform precise control over traffic behavior, as
well as performance isolation between different flows. We
summarize the main takeaways and lessons learned during the
development of this work, in order to help other users, and
conclude that both testbeds offer a valuable set of features
and performance for TSN research.

ACKNOWLEDGMENT

This research was funded by the Flemish FWO SBO
#S003921N VERI-END.com (Verifiable and elastic end-to-
end communication infrastructures for private professional
environments) project, the Flemish Government under the
“Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaan-
deren” program, and from the FWO-Flanders (Grant agree-
ment No. G055619N). This research has also been supported
by the Horizon 2020 Fed4FIRE+ project (Grant Agreement
No. 723638).

REFERENCES

[1] J. L. Messenger, “Time-Sensitive Networking: An Introduction,” IEEE
Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, jun
2018. [Online]. Available: doi.org/10.1109/mcomstd.2018.1700047

[2] “Time-Sensitive Networking: A Technical Introduc-
tion,” Cisco Public White Paper, 2017. [Online].
Available: www.cisco.com/c/dam/en/us/solutions/collateral/industry-
solutions/white-paper-c11-738950.pdf

[3] N. Finn, “Introduction to Time-Sensitive Networking,” IEEE
Communications Standards Magazine, vol. 2, no. 2, pp. 22–28,
2018. [Online]. Available: doi.org/10.1109/MCOMSTD.2018.1700076

[4] A. C. T. d. Santos, B. Schneider, and V. Nigam, “TSNSCHED:
Automated Schedule Generation for Time Sensitive Networking,” in
2019 Formal Methods in Computer Aided Design (FMCAD), 2019, pp.
69–77. [Online]. Available: doi.org/10.23919/FMCAD.2019.8894249

[5] J. Falk, F. Durr, and K. Rothermel, “Exploring Practical Limitations
of Joint Routing and Scheduling for TSN with ILP,” in 2018 IEEE
24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, aug 2018, pp. 136–146.
[Online]. Available: doi.org/10.1109/RTCSA.2018.00025

[6] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds,
the Chameleon cloud testbed, and Software Defined Networking
(SDN),” in International Conference on Cloud Computing Research
and Innovation (ICCCRI). IEEE, 2015. [Online]. Available:
doi.org/10.1109/ICCCRI.2015.10

[7] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele et al.,
“FIT IoT-LAB: A large scale open experimental IoT testbed,” in 2nd
World Forum on Internet of Things (WF-IoT). IEEE, 2015. [Online].
Available: doi.org/10.1109/WF-IoT.2015.7389098

[8] J. Marquez-Barja, B. Lannoo, D. Naudts, B. Braem, V. Maglogiannis,
C. Donato, S. Mercelis, R. Berkvens, P. Hellinckx et al.,
“Smart Highway: ITS-G5 and C2VX based testbed for
vehicular communications in real environments enhanced by
edge/cloud technologies,” in EuCNC, European Conference
on Networks and Communications, 2019. [Online]. Available:
biblio.ugent.be/publication/8642435/file/8656511

[9] L. Lo Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.
[Online]. Available: doi.org/10.1109/JPROC.2019.2905334

[10] “IEEE Standard for Local and Metropolitan Area Networks–Timing
and Synchronization for Time-Sensitive Applications,” IEEE Std
802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.
[Online]. Available: doi.org/10.1109/IEEESTD.2020.9121845

[11] “IEEE Standard for Local and metropolitan area networks –
Bridges and Bridged Networks - Amendment 25: Enhancements for
Scheduled Traffic,” IEEE Std 802.1Qbv-2015 (Amendment to IEEE
Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std
802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015), pp. 1–57,
2016. [Online]. Available: doi.org/10.1109/IEEESTD.2016.8613095

[12] “IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks – Amendment 26: Frame Preemption,” IEEE
Std 802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014), pp. 1–52,
2016. [Online]. Available: doi.org/10.1109/IEEESTD.2016.7553415

[13] “IEEE Standard for Local and metropolitan area networks–Bridges and
Bridged Networks–Amendment 28: Per-Stream Filtering and Policing,”
IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015,
IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE
Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016), pp. 1–65, 2017.
[Online]. Available: doi.org/10.1109/IEEESTD.2017.8064221

[14] “IEEE Standard for Local and metropolitan area networks–
Frame Replication and Elimination for Reliability,” IEEE
Std 802.1CB-2017, pp. 1–102, 2017. [Online]. Available:
doi.org/10.1109/IEEESTD.2017.8091139

[15] “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks – Amendment 31: Stream Reservation Protocol
(SRP) Enhancements and Performance Improvements,” IEEE Std
802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018 as amended
by IEEE Std 802.1Qcp-2018), pp. 1–208, 2018. [Online]. Available:
doi.org/10.1109/IEEESTD.2018.8514112

[16] “Virtual Wall: imec iLab.t documentation.” [Online]. Available:
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html

[17] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The Design and Operation of CloudLab,” in Proceedings of
the USENIX Annual Technical Conference (ATC), jul 2019, pp. 1–14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19

