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Abstract—Smart cities form an important new paradigm for

future cities, where technology assists people, local economy

and government. For smart cities to mature, it is crucial to

enable experimental evaluation of current and new technologies,

in realistic conditions. This paper contributes to the network

testbeds domain by introducing the CityLab testbed, where

researchers can experiment with a variety of smart city network

technologies in parallel, including IEEE 802.11, IEEE 802.15.4,

and sub-GHz protocols —on bare metal hardware enabling full

software flexibility. As a second contribution, one aspect of

realism, interference, is shown to be measured and predicted,

based on data from the CityLab deployment. Specifically, we

predict interference one hour into the future using a neural

network based on a Gated Recurrent Unit. Compared to a naive

predictor, the neural network is over 6.5 times as accurate.

I. INTRODUCTION

The arrival of the Internet of Things (IoT) is changing the
way technology interacts with daily life. In a broad range of
application domains, from mobility to health, IoT is having
a significant impact. All of these IoT application domains
come together in the smart city paradigm, where technology
supports all actors to improve life in the city and its citizens.
This new paradigm is gaining traction all over the world,
but is still in need of further evaluation. Testbeds provide
an excellent means to validate Research & Development
(R&D) results in realistic conditions. In this paper we describe
the implementation of a highly flexible smart cities testbed,
CityLab, which offers the experimenters, through standard
experimentation tools, bare metal access to multi-technology
nodes located within the streets of a city. Then we demonstrate
the usefulness and potential of data gathered, by accurately
predicting background noise.

A number of testbeds for smart city network experimen-
tation already exist, we discuss the most relevant ones in
what follows. SmartSantander [1] in Santander, Spain is one
of the most well-known testbeds in Europe, which provides
its users with data sets from a vast amount of sensors. The
Ubiquitous Oulu Smart City testbed [2] in Oulu, Finland
is focused on interaction between citizens and government.
Google’s Sidewalk Labs [3] in Toronto, Canada studies the

application side of smart cities. Bristol is Open [4] in Bristol,
UK offers 5G and optical network experimentation.

CityLab puts forward realism, a multi-technology approach
and high flexibility, which differentiates itself from these
existing initiatives. Presenting the main architecture and
capabilities of CityLab is the main contribution of this work.
As a second goal, leveraging the capabilities offered by
CityLab, this paper attempts to characterize interference in a
smart city. Unexpected interference experienced by CityLab
nodes can be detrimental to the quality and usability of
experiment results. Predicting interference based on previous
measurements could therefore improve the value of CityLab
experimentation. One indicator of interference is the Received
Signal Strength Indication (RSSI), which can be converted
to signal strength. Several papers have presented methods to
predict these RSSI values. As RSSI values can vary greatly
between subsequent measurements, many other methods first
apply some sort of smoothing to the raw results. Long and
Sikdar predict interference using a linear regression model on
smoothed data [5]. This method applies an adaptive window
mechanism, meaning the lookback window size is increased
when recent RSSI measurements are relatively stable, and
decreased in case of sudden changes. Chin et al. smooth the
data by modeling it using an Ornstein-Uhlenbeck diffusion
process, noting that RSSI values often exhibit mean-reverting
behavior [6]. They then also apply linear regression.

While many RSSI prediction methods have been developed,
all focus on short-term prediction. Predicting the interference
at most a few seconds into the future is mainly useful to
orchestrate channel hopping. We instead aim at a more
long-term general prediction of interference. Specifically, we
predict the smoothed interference one hour into the future
in order to provide important information to experimenters,
and to make correct assumptions during the current and
future experimentation. We achieve this through a neural
network using a Gated Recurrent Unit (GRU), which excels
at predicting temporal data. We focus on RSSI measurements
with high seasonality, specifically higher interference during
daytime and lower interference during nighttime. We show



that, after careful tuning, our network can learn and predict
these values with reasonably high accuracy and a low runtime.

The remainder of this work is structured as follows.
Section II lists the requirements to a smart city testbed,
followed by Section III which describes how CityLab
implements those requirements. Section IV then describes the
setup of an experiment on CityLab, followed by the results
in Section V. Finally, Section VI concludes this paper.

II. SMART CITY TESTBED REQUIREMENTS

Based on the requirements from SmartSantander, in what
follows we identify key requirements for a smart city testbed
which enables low-level network experimentation.

A. Experimentation Realism

A wide range of testbeds for wireless experimentation
already exists, often in a controlled environment. Such infras-
tructures form a perfect next step after simulations, however
they still suffer from limited realism, e.g., background noise
needs to be added artificially. In order to fully analyze research
results, we strongly advocate the need for the next step: the
use of testbeds deployed in realistic locations. For a smart city
testbed, such a step implies the need to deploy experimental
hardware outdoors, in the city itself. Moreover, in a smart city,
the interaction between user and technology is key to realizing
compelling solutions.

B. Reliability

A testbed should offer a high reliability to experimenters,
enabling full control of their experiments. Moreover, the
experiments require to be remotely manageable to lower the
operational overhead for testbed operators and to be able
to leverage federation with other testbeds. This implies the
need for remote node recovery mechanisms, where on-site
maintenance is limited to a minimum. On a network level, this
translates to the need for continuous high-speed low-latency
access to the testbed nodes.

C. Multi-technology

Smart cities are a relatively young IoT application domain.
In this respect, the choice of the one dominating wireless
technology or technologies is not yet clear, compared to
e.g. smart homes where IEEE 802.11 and Bluetooth can be
arguably be considered dominant network choices. Therefore,
it can be argued that smart cities testbeds should start from a
multi-technology approach and even should be open to new
technologies when they arise, rather than picking one tech-
nology upfront. In contrast, in the pioneering SmartSantander
testbed only ZigBee and Bluetooth are deployed.

III. CITYLAB

A. Overall Architecture

To realize a smart city testbed which fulfills the require-
ments outlined above, the CityLab testbed is based on the
architecture shown in Figure 1. Researchers use jFED [7]

Fig. 1. CityLab architecture overview.

Fig. 2. CityLab gateway components, at the top the passive and active outdoor
units, at the bottom the indoor unit.

to access an EmuLab-based experiment management system
[8], located in a data center of the University of Antwerp /
imec, to control gateways distributed in the city of Antwerp,
Belgium. The experiment management system is connected
to the gateways over an academic fiber network, with each
gateway connected over 100Mbit Ethernet and most gateways
over Gigabit Ethernet.

B. Gateways

The CityLab testbed nodes are called gateways, which are
composed of three components: an indoor unit, an active
outdoor unit and a passive outdoor unit, as shown in Figure
2.

Using jFED, the experimenter gets access to the outdoor
unit, where an X86 PCEngines APU embedded device allows
the experimenter to run bare metal Linux booting over Preboot
eXecution Environment (PXE). The embedded system is then
connected to multiple radios, supporting a variety of network
technologies as summarized in Table I. To enable flexible
addition of new and arising network technologies, the outdoor
unit also relies strongly on an embedded USB hub, which
allows connecting additional network technologies easily.



TABLE I
CITYLAB GATEWAY RADIOS AND ANTENNAS

Network Technology Antennas and Bands

IEEE 802.11ac 3x 2.4+5GHz
(2.4GHz+5GHz, client+AP)
IEEE 802.11ac (2.4GHz+5GHz, client) 2x 2.4+5GHz
+ Bluetooth Low Energy
IEEE 802.15.4 at 2.4GHz and 868MHz 1x 433MHz + 1x 868MHz
Sub-GHz protocols 1x 433MHz + 1x 868MHz
e.g., DASH-7, IEEE 802.15.4g
Single-channel LoRa client 1x 868MHz

Each radio is connected to dedicated to antenna(s) enclosed
in what is called a passive outdoor unit, as shown in Table I.

The indoor unit then connects the outdoor units to the
academic network over two Power Over Ethernet+ cables. As
these cables provide both power and data, a simple power
switching component in the indoor unit allows rebooting the
outdoor unit and recovering it in (almost) any situation.

C. Experiment Management

The gateways are managed by an EmuLab installation which
is available through jFED over a Slice-based Federation Archi-
tecture (SFA), building on the foundations of the Fed4FIRE+
EU project [9]. In a traditional lab testbed setup, EmuLab
expects all devices to be directly reachable via a single
managed switch to enable imaging and (PXE) booting or
rebooting of systems. In the case of CityLab, this is unfeasible
given the distributed deployment of CityLab gateways. These
are deployed in different streets, connected to different subnets
of the university network. To tackle this, the indoor units
transparently tunnel the outdoor units to a single logical subnet
in the gateway management network. With this approach, to
the existing EmuLab systems, the outdoor units transparently
appear local and all existing tools can be leveraged.

D. Deployment

The CityLab gateways are deployed in the City Campus
neighborhood of the city of Antwerp, the second largest city in
Belgium. As shown in Figure 3, about 30 gateways are actively
deployed, with 20 being installed in the coming months.
Moreover, a smart zone is being designed, where a dense
sensor deployment will be supported by 20 more gateways.
Figure 3 also shows an example deployments of a CityLab
gateway in the streets of Antwerp.

CityLab focuses on network experimentation to increase
maturity of smart city connectivity, while in parallel user
involvement should be evaluated through Living Labs. There-
fore, our smart cities testbed is also part of a bigger program
[10] where smart cities use cases are deployed and evaluated,
based on more traditional network technology. Mobility has
not been taken into account yet, because of the initial focus
on the static infrastructure. First trials on small-scale use cases
with mobile data gathering have been started, based on stable
LPWAN technology.

To demonstrate the realism and capabilities of CityLab, we
started from the observation that interference is an important

Fig. 3. Map of CityLab gateway locations and example deployment, center
right in the picture.

characteristic of realism. Therefore, in the following sections
we describe an experiment where we characterize and even
predict the interference.

IV. USE CASE: PREDICTING CROSS-TECHNOLOGY
INTERFERENCE

A. Description

As a use case of the CityLab testbed, we measure and
ultimately predict the background noise the nodes experience.
Such knowledge can help us in planning future experiments
and in interpreting their results. We first measure background
noise per 2.4GHz Wi-Fi channel once per minute over the
period of three weeks. After processing the raw data, we train
and test a neural network to predict the intensity of the noise.
As we measure the interference in a technology-agnostic way,
our results are useful for experiments using any technology in
the 2.4GHz bands.

B. Experimental setup

1) Measurements: We used eleven CityLab nodes at
different locations to measure background noise. These nodes
are equipped with a COMPEX WLE900VX-7A network
adapter, which contains a Qualcomm Atheros QCA9880
wireless chipset. As with all 802.11ac and 802.11n chipsets
by Qualcomm Atheros, this chipset supports a mode called
spectral scan. In this mode the chipset passively measures
radio activity on a channel (20MHz wide by default). As the
chipset will measure any activity, as opposed to just IEEE
802.11 traffic, it in essence functions as a simple spectrum
analyzer. The feature has been incorporated into the open
source ath10k driver. While the driver does not (yet) support
a mode sweeping all supported channels, this behaviour can
be achieved by running the chipset in background mode
and then performing an iw scan across all frequencies.
The latter listens for access point beacons on all provided
frequencies while the former scans the current channel.



Spectral scan mode reports the noise floor and the measured
RSSI. While the calculation of the RSSI is not standardized,
Qualcomm Atheros is known to use signal strength in dBm

minus the noise floor, meaning we can easily derive the signal
strength from the reported values.

2) Data Processing: To extract signal strength from the
raw data dumps created by the chipset, we use the FFT eval
tool by Simon Wunderlich1. While intended to visualize the
signal strengths across multiple channels at one point in
time, we modified it to instead process temporal data for
one channel. Across multiple measurements we noticed a
high variability in measured signal strengths. Occasionally
the measured signal strengths were unrealistically high,
reaching 129 dBm, which is almost 8GW. After trial and
error analysis, we decided to discard all samples over 0 dBm
and then take the fifth highest remaining sample to avoid
taking these outliers into account. Even then, the data is
still highly variable and thus impossible to predict with
reasonable accuracy. We therefore smooth the data using the
Savitzky-Golay filter [11], which has been applied to RSSI
values before [12] [13]. For every point k, the filter fits a
polynomial p(x) to all points in a window centered around
k, calculating p(k) as the smoothed value [14]. The window
size and polynomial degree are the two main parameters of
the algorithm. After manual experimentation, we set these
to 1101 and 2. With these parameters, the filter removes
minute-to-minute variations, revealing any daily patterns.

3) Neural Network Design: Next to analyzing activity in
the radio spectrum, we also want to predict it. Specifically,
we want to predict the activity one hour into the future,
based on previous measurements. One system particularly
fit for such tasks is Recurrent Neural Networks (RNNs).
These neural networks can recognize temporal patterns by
remembering aspects of past inputs in their internal memory.
Classical RNNs are very susceptible to the vanishing and
exploding gradient problems. Other implementations of the
RNN concept, such as the GRU [15], manage to avoid
these problems, while performing even better than classical
RNNs [16]. A GRU is based on two types of gates: the
update gates and the reset gates. Each hidden unit inside a
GRU retains a state. When new data is fed to the GRU, the
reset gates decide which aspects of the state to forget, while
the update gates decide how to incorporate the new data
into the state. The exact behaviour of these gates is decided
by their weights. Such networks are trained by repeatedly
feeding inputs, each time adjusting the weights to bring the
network’s actual output closer to the known correct output.
While it is possible to stack multiple GRU layers, this did
not improve performance for our application. As such, our
network consists of only one GRU layer, followed by a fully
connected layer which reduces the outputs to a single value.

1https://github.com/simonwunderlich/FFT eval

4) Neural Network Tuning: The behaviour and structure of
a GRU layer are further decided by a number of hyperpa-
rameters, which we must tune to approach the layer’s optimal
performance. We tuned the following hyperparameters:

1) epochs: The number of times the entire training set is
fed to the system during the training phase. A higher
value may lead to more accurate results at the cost of a
higher learning time. However training for too long may
worsen the network’s predictive capabilities [17].

2) units: The number of units in the GRU layer. In-
creasing the number of units may allow the layer to
learn more complicated patterns, at the cost of additional
runtime. On the other hand setting this too high may
again have a negative effect [17].

3) lr: The learning rate. This controls how significantly the
weights are adjusted after every epoch. Through a higher
learning rate the optimal values of the weights can be
approached faster, however they can also be ’overshot’
more easily [18].

4) lookback: Instead of only feeding the latest measure-
ment to the network at each step, we feed the latest
lookback measurements. Increasing the lookback be-
yond 1 usually improves performance up to a point, at
the cost of additional runtime.

5) retrain_interval: After retrain_interval
predictions, we retrain the network on the most recent
data. This way, the network will adapt to changing
patterns in the data.

The network was trained using the Adam optimizer [19],
optimizing the Mean Absolute Error (MAE).

As input we feed the network the set of most recent
measurements. During training, the expected result is the
measurement sixty data points (i.e., one hour) into the future.
We initially train the network on the first three days worth
of data, followed by occasional retrains on equally sized but
more recent data sets. We normalize the data of the first
three days by subtracting the mean, and dividing it by the
standard deviation. Future data is also normalized using the
mean and standard deviation of only the first three days,
meaning normalization is consistent across the entire data set
without having future data points influence the normalization.
As long as the range of future data points does not differ
significantly from the first three days, this should not have a
negative effect on prediction accuracy. The full procedure is
summarized in Algorithm 1.

To evaluate the final result we use the Mean Absolute
Scaled Error (MASE), which expresses the network’s
performance relative to a simple baseline prediction [20]. As
the data set is highly seasonal (high activity during daytime,
low activity during nighttime), we use the (smoothed) RSSI
measured exactly 24 hours prior to the value to be predicted
as a baseline. A MASE of 1 would indicate the network’s
MAE is equal to the baseline prediction’s, while a MASE
under 1 indicates better performance.



Algorithm 1 Neural network training/testing
1: function GETINPUT(data,index)
2: input data[index� lookback, index]

3: function GETOUTPUT(data,index)
4: output data[index+ predictionStep]

5: data LOADDATA()
6: REMOVEOUTLIERS(data)
7: APPLYSAVITZKYGOLAY(data)
8: NORMALIZE(data)
9: net NEURALNET(GRU, FULLYCONNECTED)

10: TRAIN(net, data[, trainSize])
11: for index in [trainCount, SIZE(data)] do

12: result PREDICT(net, GETINPUT(data, index))
13: expectedResult GETOUTPUT(data, index)
14: if TIMETORETRAIN( ) then

15: TRAIN(net, data[index� trainSize, index])

Fig. 4. The smoothed data.

TABLE II
TUNED HYPERPARAMETERS

epochs 85
units 53
lr 0.00077

lookback 52
retrain_interval 1180

V. RESULTS

All but one of the nodes did not exhibit any seasonal
patterns even when smoothed, instead showing almost no
activity, constant high activity or randomly fluctuating activity.
None of these are interesting or even possible to predict. The
one clear daily pattern was observed on channel 1 across
the entire three weeks. Fig. 4 shows a subset of the raw and
smoothed results, while Fig. 5 visualizes only the smoothed
results across the entire range. We used only this data set

Fig. 5. All smoothed measured data.

TABLE III
RESULTS OVERVIEW

RSSI range (smoothed) [�43,�27] dBm
runtime ⇠1.5 minutes
MASE 0.15
MAE 0.52dBm

to tune, train and test the neural network. To determine the
set of hyperparameters, we first established rough intervals
for well performing values through manual experimentation,
followed by automated random exploration of the remaining
space. Out of over 2500 configurations we chose the best
performing one and continued the search in its vicinity for
another 1000 configurations. Table II shows the resulting
hyperparameter set. We implemented the neural network
using the Keras framework2 with Tensorflow backend3. Table
III provides an overview of the results after running the
network on a 1.8GHz processor.

We observed that with low lookback values, the
network would often simply generate predictions very close
to its latest input, meaning the predicted RSSI was merely the
measured RSSI delayed by one hour. Manual examination of
the results shows that this effect diminishes when increasing
the lookback up to a point, although it is still noticeable
in some places. Further increasing the lookback past 52

only decreased prediction accuracy, likely due to overfitting.
Fig. 6 shows part of the resulting prediction. The first peak
is accurately predicted. The major decrease in signal strength
is first predicted too early, although the prediction adjusts
itself and eventually predicts the major decrease at roughly
the correct time. Next, Fig. 7 shows the peak of January 13.
This peak was considerably lower than during previous days,
as shown in Fig. 5. The predictor however easily adapts to
this and does not significantly overestimate the RSSI.

Finally we notice that, with the Savitzky-Golay filter,

2https://keras.io/
3https://www.tensorflow.org/



Fig. 6. Predictions for Jan. 9, daytime

Fig. 7. Predictions for Jan. 13, daytime

a point’s smoothing is influenced by points following it,
meaning future data influences the smoothing of current data.
One way to mitigate this would be to increase the sampling
rate. With a sampling interval of 100ms, a point’s smoothing
would only take the next minute worth of data into account.
By disregarding the final minute of data, we could predict
data without any influence of future data points. Another
option would be to look into different smoothing algorithms
altogether. We will further investigate our smoothing approach
in future work.

VI. CONCLUSIONS

This paper has introduced CityLab, a novel smart cities
experimental facility, which enables multi-technology exper-
imentation in a realistic smart cities context, at a large scale.
The testbed is based on gateways, composed of three units,
which enable outdoor experimentation with multiple wireless
technologies. Eleven gateways in the CityLab deployment are
then used to characterize interference. After filtering our mea-
surements, we revealed a clear daily pattern in the interference
levels in one case. We then designed and tuned an efficient
neural network to predict this interference. Our network out-
performed a naive predictor by a factor 6.5, with a mean error
of 0.52 dBm, making it usable in future experiments on the
CityLab testbed.
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