
Evaluation of Objective Function Descriptions And
Optimization Methodologies For Task Allocation In

A Dynamic Fog Environment
Reinout Eyckerman, Siegfried Mercelis, Johann Marquez-Barja and Peter Hellinckx

IDLab - Faculty of Applied Engineering
University of Antwerp - imec

Sint-Pietersvliet 7, 2000 Antwerp, Belgium
Email: reinout.eyckerman@uantwerpen.be

Abstract—Industry, healthcare, and various other sectors are
rapidly adopting the Internet of Things to drive information and
automation systems. However, as the number of devices increases,
the number of information sent over the network increases
as well, inducing network congestion and a potential latency
increase. To ensure that demanding applications, such as smart
vehicles, are supported in the current network infrastructure,
we provide a general methodology of distributing software
from the cloud toward the edge, reducing multiple objectives
such as latency. In this research we define several problems
in multi-objective distribution scenarios, and compare several
methodologies for defining and solving the problem. Additionally,
we propose a method for decreasing the problem complexity,
improving performance with only slightly reduced accuracy.

ACKNOWLEDGEMENT

This research received funding from the Flemish Govern-
ment (AI Research Program).

I. INTRODUCTION

The Internet of Things (IoT) has become an intrusive
technology, taking both consumers as businesses by storm. An
example is the Industrial Internet of Things, which is based on
bringing IoT intelligence to the industry, and is a core pillar
of the Industry 4.0. Automated Guided Vehicles (AGVs) are
one such use case, which combine local sensor information
together with a global environment model, provided by cloud
services using cameras and other systems. Other examples are
storage facilities automating stock handling using RFID.Most
major cloud providers support services that work jointly with
software stacks built upon IoT devices, allowing combining the
IoT sensing and actuation with the cloud’s massive compute
capabilities. This allows compact and resource-constrained IoT
devices with a massive computing backend. However, the IoT -
Cloud paradigm has drawbacks, such as the detrimental effect
on the network. As IoT devices are continuously connected,
they start to congest the network and increase the latency.
According to Cisco, 850 ZB of data is predicted to be
generated in 2021, more than triple the 220 ZB generated in
2016 [1]. An up-scaling of data centers and network links
is required to process this increasing quantity. A latency
increase is unacceptable in low-latency environments, such as

the previously defined AGV scenario, where it can cause extra
costs due to devices crashing into each other. Such issues cause
a steady research into improving the current network infras-
tructure, such as 5G networking, which encompasses fields
such as Software Defined Networks and optimizing network
traffic routes. Fog computing is another solution which intends
to move software currently being ran in the cloud towards
closer computing resources, using personal computers and
routing/switching devices such as the Cisco IOx devices [2].
Distributing tasks over the fog allows reducing the load on the
network by using pre- and post-processing tasks, ensuring only
the essential data is transferred, as shown in Fig. 1. Moreover,
distribution aids in efficiently using all the available device
resources, as these often have excess compute available.

However, research in this area has focused on solving spe-
cific use-cases. The lack of general methodology makes it diffi-
cult to find a generally optimal solution across various network
types. To this goal, we propose a general coordinator service
which considers the device contexts and required objectives.
These objective models can be changed with minimal effort,
allowing the rapid deployment on different kind of networks
with different requirements and objectives. It will continuously
optimize the task placement over the network, so that optimal
resource usage with an optimal performance is achieved.
Moreover, we differentiate between Multi-Objective Optimiza-
tion (MOO) and Single-Objective Optimization (SOO), and
propose an approach to make large problems more scaleable.
The remainder of the paper is structured as follows: In Section
II we describe the current State of the Art related to this
research. We then continue into Section III where the problem
is formulated. In Section IV we state our methodology, and in
Section V we showcase our achieved results. This is followed
by a Conclusion in Section VI. Finally, Section VII describes
future research directions related to this research.

II. STATE OF THE ART

Fog and Edge computing were developed as a response
to the need of keeping IoT applications low-latency while
maintaining the low compute capabilities of the IoT devices
themselves to press costs. Manual software placement, a key



Fig. 1. Task Mapping Problem

issue, is time-consuming and error prone. Additionally, this
problem has many variables and complexities, as defined in
previous research [3]. The placement problem is known to be
an NP-hard problem [4], where the complexity of finding a
solution increases as the amount of components or machines
in the network rises. The best solution has the optimal location
of software across the network with reduced network load and
improved resource usage. Sub-optimal placements could even
increase the overhead compared to regular cloud computing.

Task allocation in fully distributed systems has additional
issues, such as the lack of a global control unit and resource
distribution complexities. If the network on which the com-
ponents are placed is static in nature, the software placement
happens once, resulting in a ”set and forget” approach. How-
ever, few networks are actually static, and as the network
changes, the optimal component placements deteriorate over
time. Similarly, new applications can continuously arrive to the
network to be distributed. However, the context in which these
computations take place also changes continuously. Context-
awareness is a broad field with plenty complexities. If a
local device decides to back everything up to a cloud server,
the available bandwidth decreases. If a user manually places
a task on a device, the coordinator should reduce the task
amount dynamically assigned to this device, to prevent the
device overloading. We will tackle the previously defined
complexities, such as complexity, dynamic behaviour and
context-awareness, in the following subsections.

A. Frameworks

Fog applications have close ties to distributed systems,
which are harder to develop and maintain than monolithic
applications. Frameworks such as AIOLOS by De Coninck et
al. attempt to lower the development cost of such distributed
software [5]. This framework enables the deployment of
component-based applications across heterogeneous devices,
without having to manage the communication channels. A
related framework is Distributed Uniform Streaming Frame-
work (DUST), which adds a transparent communication to
lower the development cost, handling the transport complex-
ities for the executing program [6]. This transparency allows
developers to pay more attention to their core logic. As this
framework is configuration-based and allows for easy and
modular communication stacks, we will use this framework as

the application chain base. This high level of control enables
optimal configuration of the stack by the coordinator.

B. Placement Techniques

Previous research has shown that centralised and distributed
task allocation coordination techniques both have their own
place in the world of distributed task allocation [7]. We
described requirements for both distributed and centralised
coordination techniques, addressing issues such as the finding
of a global optimum, scalability to large-scale networks and
a limited resource consumption so that it can run in resource-
constrained networks. We will discuss both techniques below.

1) Distributed Algorithms: Centralised coordination is es-
pecially efficient in smaller scale static networks where ef-
ficiency is essential, whereas distributed coordinators are
more dynamic, but have problems with finding good optima.
Vanneste et al. [6] proposed a distributed task coordination
protocol. They applied the Contract-Net protocol for decen-
tralized task allocation, considering resource constraints such
as battery level. However, dynamic approaches have a hard
time finding optima. For this, previous research proposed a
hybrid approach using Ant Colony Optimisation, where ants
traverse the network and build up a task placement suitability
map of the traversed machines, leaving behind pheromones for
other ants to improve their placement [7]. The approach might
still be too slow for highly dynamic networks, however, but is
more scalable than a centralised coordinator. However, as the
complexities, such as Multi-Objective Optimization (MOO),
are considerably higher, we will first focus on centralised
algorithms for optimal placement.

2) Centralised Algorithms: Previous research has provided
a static centralised coordination service deploying software
for fog networks [8]. Several approaches into task placement
heuristics were considered on tree graph structures, consid-
ering the network shape. Similarly, Tang et al. [9] used ma-
chine learning algorithms to optimise task migration policies.
These policies are used once all the tasks are deployed, so
that there is no additional overhead of unnecessarily moving
tasks. Using centralised coordination, a search algorithm can
search towards a global optimum as the entire network state
is known. One popular metaheuristic for this is the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) Genetic
Algorithm, proposed by Deb et al. [10]. This bio-inspired
algorithm uses evolution through reproduction, mutation and



elitism for the desired results. Alternatives exist, such as Multi-
Objective Particle Swarm Optimization (MOPSO), where a
swarm of particles is simulated, which moves toward the
objective space’s optima. Most MOO algorithms tend to work
in continuous search spaces however, whereas our search
space is discrete. This is because a task only maps to a
single device. Discrete versions of most algorithms exists,
such as the continuous-discrete FC-MOPSO algorithm by
Mokarram et al., which we implemented in this paper [11]. We
implemented these centralised algorithms, defined potential
issues and showcase them in the results.

C. Models

To determine the best placement, a model of the both the
application and the network is required. The requirements of
the application model should be mappable to the network
capabalities. These are closely bound to the context of the
application and the network.

1) Application Model: Application requirement examples
are Worst-Case Execution Time (WCET) and the maximally
allowed latency. Recent research has shown promising tech-
niques for measuring WCET. Huybrechts et al. [12] propose a
novel hybrid WCET measuring technique, taking static mea-
surements based on source code and dynamic measurements
by executing software. These are combined using Machine
Learning to do predictions on code bases, enabling measure-
ments on large applications. Krommydas et al. [13] define the
OpenDwarfs benchmark for measurements of heterogeneous
computing capabilities. It allows comparing multiple processor
types (CPU, GPU, FPGA) based on several idioms such as
execution time and data transfer. Such research can define the
application metrics, essential for this research. These metrics
are then considered so that the objectives and constraints can
be determined. An issue is the large device heterogeneity and
metric difference. This can be solved by measuring across the
set of available devices, creating lookup tables.

2) Context: Distribution techniques only work efficiently if
they consider the context. This tells us more about the specific
device, software and other variables. Liu et al. [14] describe a
context as a way of processing data quality. This data quality
is a sensor output quality measure, and this context manages
to transform it into information, which can then be used by the
application. This is closely related to the actual requirements
for the application, as a dirty camera with a part blacked out
might still be functional for the application. Baldauf et al.
provide us with an extensive survey of context in relation to
applications [15]. They also make a differentiation between
physical sensors (hardware), virtual sensors (software) and
logical sensors (sensor fusion). These, however, are application
contexts. The device context should be considered as well,
which might change due to environmental factors (e.g. heat)
or external processing requirements. Moreover, as networks
are dynamic systems, the throughput also changes. We will
define how these contexts come into play when determining
an optimal placement. We attempt to optimize the coordination

techniques for centralised coordination using more fundamen-
tal techniques, and compare several methods.

III. PROBLEM STATEMENT

The goal of task distribution coordination is to create a task
to device mapping in such a way that certain objectives, such
as energy usage and latency, are optimized while adhering to
the device constraints, such as available memory or bandwidth,
as shown in Fig. 1. This has proven to be an NP-hard problem
[16]. Considering dynamic device locations and continuous
link variations further increases this complexity. However,
the devices and the software deployed on them can change
dynamically as well. Depending on user requests, different
software can be deployed and undeployed, and depending on
the information the software receives as input, the resource re-
quirements can also change drastically. Moreover, the context
also plays a large role. We define two context types for this
problem, of which we will tackle the first in this research.

1) Resource Context: Within the resource context, device
capabalities can change. For example, users can put software
on devices in multi-tenant scenarios. This reduces the tasks
that can be deployed on the device. External factors such
as battery level or heat can also reduce the amount of
computations that the device can do, and hardware failures
can further influence this. Moreover, the network itself is a
dynamic entity, as data streams continuously change conform
to the user demands.

2) Application Context: In the application context, data
quality is an important factor: depending on environmental
factors, the sensors can produce less useful input, such as
a camera at night or a microphone when it is windy. This
depends on the application’s requirements: a camera still
detects light at night, which might be the application’s goal.
Moreover, the application can choose to use different sensors
depending on the environment, which has an effect on the
application’s resource requirements. With this, we show that
a large set of variables influence this problem. We will next
define and tackle several variables.

A. Network & Application Models

The network is considered dynamic, with device reloca-
tion, changing links and even context shifts. These context
shifts signify a change in, for example, load on devices
by applications run by users, causing the potential need to
redistribute an application to ensure optimal resource usage.
A software distribution coordinator has to consider these
numerous factors to achieve an optimal placement. This is
a complex task, of which we will attempt to solve multiple
parts, such as optimal placement and dynamic networks. The
network has been modeled as a weighted directed graph,
defined as N = {M,L}. Here, M represents the set of
vertices/machines m ∈M . L is a set of directed edges l ∈ L.
The directed links allow the independent modeling of up- and
download link metrics, which are unnecessarily the same. This
holds especially for fog networks, where the Internet Service
Provider often throttles the upload speed. The considered



device metrics and constraints are shown in Table I. Machine
constraints prevent processor, memory and Network Interface
Cards (NICs) overloading. Link constraints use bandwidth as
a constraint, preventing link overuse inducing extra latency,
interference or even failures. The changing device context also
manipulates these constraints. A device placed under full load
cannot guarantee that any additional tasks work efficiently.
The application placed over the network is modeled as a

TABLE I
USED NOTATIONS

Notation Parameter
mcpu Available CPU capabilities of device m
mcpu,e Energy requirements of the CPU of device m
mmem Available memory capabilities of device m
mmem,e Energy requirements of the memory of device m
mtxi Available transmission capabilities of NIC i of de-

vice m
mrxi Available receiving capabilities of NIC i of device

m
mtrx,e Energy requirements of NIC i of device m
mstor Available storage capabilities of device m
mstor,e Energy requirements of the storage of device m
me Energy cost of device m
lbw Available bandwidth of link l
llat Induced latency of link l
tcpu CPU requirements of task t
tmem Memory requirements of task t
twcet,m WCET of task t on device m
twcetd WCET deadline of task t
tstor Storage requirements of task t
ttxi Transmission requirements on communication link i

of task t
trxi Receiving requirements on communication link i of

task t
cbw Bandwidth requirements of communication link c
clat Maximally allowed latency of communication link c

weighted directed graph as well, defined as A = {T,C},
where T is the set of vertices/tasks t ∈ T which are to
be executed, and C the set of edges/communication links
c ∈ C between each task. Multiple edges between each service
represent multiple ”communication channels”. This allows the
modeling of different communication parts, such as using
different channels for data or control. The requirements of task
t are the worst-case resource consumption parameters, such as
WCET. These can be calculated using existing frameworks
such as the COBRA tool [12]. Similarly, the requirements
of communication link c are constraints such as the required
bandwidth. Only stateless tasks are considered to remove the
state information communication and retaining complexity.
The required software is available on each device, removing
the need to transfer it from an application source.

B. Objective Function

To optimize the placement, we will optimize the objective
functions displayed in Table II. We minimise WCET across
devices, energy cost per used resource across devices, and
reduce the bandwidth used over the network. For latency, we
minimise the induced latency between every task. Optimising
multiple objectives is a Multi-Objective Optimization (MOO)

problem. As these objective functions are often conflicting,
there often is no single best solution. Instead, a pareto front
is found, a front in the objective space where all solutions are
pareto-optimal. This is defined as follows [17]:

Definition 1. An objective vector f(x∗) based upon decision
vector x∗ ∈ S is Pareto-Optimal if there does not exist another
decision vector x ∈ S where fi(x) ≤ fi(x

∗) for all i =
1, 2, . . . ,W and fj(x) < fj(x

∗) for at least one j.

Correspondingly, we define the nadir and utopia point [17]:

Definition 2. An objective vector znad =
(znad1 , znad2 , . . . , znadW ) where the j-th element is taken
from a pareto-optimal point where the worst value for fj is
achieved is called a Nadir Point.

Definition 3. An objective vector zo = (zo1 , z
o
2 , . . . , z

o
W )

where the j-th element is taken from a pareto-optimal point
where the best value for fj is achieved is called a Utopia Point.

Fig. 2. Visualisation of a search space and its corresponding Pareto Front.

The utopia and nadir points are visualised on Fig. 2, where
the dotted oval signifies the objective space. These definitions
show that the nadir and utopia points depend on the pareto
front. Do note that the utopia point is generally not attainable
due to conflicting objective functions. Moreover, there are a
set of constraints we have to adhere to, displayed in Table III.
Any solution not adhering to these constraints is considered
an infeasible solution. With regards to MOO, these constraints
can be considered as hard objectives, being either met or
unmet. This allows comparing solutions based on the amount
of satisfied constraints, ensuring that the most viable solution
is found, even if constraints cannot be met. Constraint handling
has been implemented according to Deb et al. [10]. They
propose adding a constraint metric to every solution, where
non-constrained solutions automatically dominate constrained
solutions, and constrained solutions dominate each other de-
pending on how far the constraints are exceeded. This is
done by summing how much percent the placement exceeds
the device’s available resources. We will now define multiple
methods of handling objectives and constraints.



TABLE II
OBJECTIVE FUNCTIONS

Objective Function

WCET
M∑
m

m∑
t
twcet,m

Energy
M∑
m

m∑
t
mt,e ∗mec

Bandwidth
C∑
c

croute∑
l

cbw

Latency
C∑
c

croute∑
l

llat

TABLE III
CONSTRAINTS

Constraint Function
WCET ∀mεM, tεT : twcet,m ≤ twcetd

CPU usage ∀mεM : mcpu ≥
mT∑
t
tcpu

Memory usage ∀mεM : mmem >
mT∑
t
tmem

Storage usage ∀mεM : mstor >
mT∑
t
tstor

NIC outgoing usage ∀mεM,NICεm : NICtx >
mT∑
t
ttx,c

NIC incoming usage ∀mεM,NICεm : NICrx >
mT∑
t
trx,c

Bandwidth ∀lεL : lbw ≥
croute∑

l

cbw

Latency ∀cεC : cmaxlat ≥
lroute∑

c
llat

IV. METHODOLOGY

There are multiple ways to tackle MOO Problems. Each,
however, has its own benefits and drawbacks. We will now
define and compare two, and look into solution space reduction
and solution re-use to reduce the problem complexity.

A. Solution Space Exploration

We will compare MOO with SOO within the context
of task allocation. There is a certain added complexity in
finding proper solutions for MOO problems. As there are
multiple pareto-optimal points, a Decision Maker (DM) has
to determine which points are most relevant to him. With this
in mind, we have three ways of solving MOO problems:

• A priori: User preferences are defined in advance, and
the algorithm works with these.

• A posteriori: The algorithm provides the pareto front, or
a part of it, and the DM selects the most relevant solution.

• Interactive: The algorithm and the DM interact to find a
fitting solution.

In this case, a priori methods are the most interesting, as it
allows the system to work autonomously, whereas the other
tend to require interference of the DM. Two methods will now
be defined for finding a solution.

1) Weighted Sum: The first solution to tackling the MOO
problem uses the Weighted Sum method, where each objective
gets multiplied with its user preference, and then summed

together [18]. This results in a single objective function in
which we then search for an optimum. However, such sum-
mation brings along some complexities. To properly execute
the weighted sum method, each objective function that is opti-
mized is to be normalised. This removes its dimensions, so that
the resulting single objective function considers each objective
equally, ensuring that no objective has more weight than the
other purely due to its magnitude. Moreover, normalizing these
objectives helps the DM with selecting appropriate weights,
as each weight now can have the same order of magnitude.
To normalize the objectives, the previously defined nadir and
utopia point are required, allowing us to normalize them using
the following equation [19]:

ūi =
ui − zoi
znadi − zoi

(1)

Here, ūi represents the normalized objective i. The goal for
solving a MOO problem is to find either a single point on the
pareto front which best matches user preferences, or finding
the entire pareto front. However, this is a Catch-22 situation:
to find a pareto optimum using a single objective function, the
nadir and utopia points are required. But to find these points,
the pareto front is required.To find the nadir and utopia points,
required for single-objective optimization, we apply research
done by Deb et al. [17]. They propose an adaptation of the
NSGA-II algorithm. The original NSGA-II algorithm attempts
to keep its population as diverse as possible by preventing pop-
ulation crowding, allowing for more exploration. The proposed
adaptation changes this crowding function, by preferring the
individuals closer to the pareto front extremes, as this is closer
to the values required for the nadir point. These extremes
are shown as x1 and x2 for the two objectives visualised
in Fig. 2. The population gets spread over the pareto front
borders, maintaining its diversity [20]. This provides us with
the required population so that an estimate of the nadir and
utopia points can be created. To normalize solutions, we use
the following objective equation, where ok corresponds with
the objective functions defined in Table II, and wk represents
the weight for the objective as defined by the DM.

C =

#Objectives∑
k

ok ∗ wk (2)

This requires the parameters to be normalized using Eq. 1. This
is then optimised using a regular Genetic Algorithm (GA).

2) Evolutionary Multi-Objective Optimisation: Our sec-
ond approach is the use of an Evolutionary Multi-Objective
Algorithm (EMOA). For this we will use both NSGA-II
[10], a widely-used baseline, and the FC-MOPSO swarm
optimizer [11]. NSGA-II is a genetics inspired algorithm,
using reproduction, mutation and elitarianism as functions to
grow the population towards the desired goal. FC-MOPSO
is particle swarm optimization algorithm, with the swarm
searching through the space. These techniques are aimed at
multi-objective optimization, but have a few drawbacks. One
is the difficulty to embed user preferences into the search,



as each objective function gets updated separately. Wang
et al. overcame this problem by adding a user preference
embedding, essentially applying the weighted sum method
inside NSGA-II [21]. However, it can reduce the effectiveness,
as preferring solutions with good user weights can reduce the
solution diversity.Without user preference embedding, these
algorithms work a posteriori, where it finds a part of the pareto
front. The DM must find a solution from this front which he
assumes to be best conform to his preferences. This approach
is not preferred, as the coordinator is to work completely
autonomously. We however use this a posteriori approach to
find a pareto front, and then use the weighted sum method to
compare the solutions. The DM assigns a preference weight to
each objective function, using for example the ranking method.
Once the pareto front is determined, the objective function
weights are normalized by creating a nadir and utopia point
from the resulting solution. The weights are then multiplied
with the normalized results, which are then summed together,
resulting in a weighted sum as defined in Eq. 2. From the set
of pareto-optimal placements the most preferential placement
is found by minimizing this function.

B. Graph matching

As the model contains many variables, especially in ad-
vanced network models, we propose applying pre-processing
to reduce the search space complexity. We simplify the prob-
lem by applying graph coarsening to the application graph,
reducing number of tasks and decreasing the algorithm search
area. This is implemented using a greedy maximum weight
matching algorithm. The tasks are aggregated on the edges
which have the largest bandwidth requirements, the lowest
latency requirements and the lowest device requirements. This
ensures that the high load links are merged, while the merged
tasks can still run on almost every device. As the result is a
maximal matching, tasks with high computation requirements
are also matched, but if these two tasks would be put together,
it is possible that no device in the network can run it. This
is solved by keeping only the matches whose connected tasks
can still run on a device within the most constrained 20% of
the devices. An example is given with Fig. 3, where the two
tasks with the highest bandwidth/weight get matched.

Fig. 3. Task Matching Example where largest weights get matched

C. Migration policy

Solutions do not stay valid, as the network and software
requirements change over time. For this, the coordinator needs
additional measures if it is to support dynamic networks. Mul-
tiple scenarios require software migration, but they all differ
in software migration requirements. We define two migration
types: required and optional. Required migration contains tasks
which must be moved, whereas optional migration exists of
tasks which are moved to optimize the global placement, but
the requirements are not necessary.
Required:

• Initial placement: Unless all devices contain all tasks,
tasks need to be moved from the task storage to the device
which will run it.

• Agent failure: If an agent or its device fails, the tasks
must move from the task storage to the new device. This
occurs when a device loses power or leaves the network.
Only that agent’s tasks need to be moved.

• Agent shutdown: Graceful shutdown of an agent requires
tasks to move from the agent it was running on to the
new agent. Might happen when a device gracefully shuts
down. Only that agent’s tasks need to be moved.

Optional:
• Context change: If network links or device loads change

due to external influences, more optimal placements can
appear. Agent shutdowns and failures greatly influence
this. Potentially all tasks are moved.

• New agent: If a new agent joins the network, tasks can
be distributed to it which might cause the application to
work better. Potentially all tasks are moved.

Note that context change migrations change from optional to
required if constraints are no longer met.

D. Routing

For our results, we used Dijkstra to find the shortest path
between two machines to measure the cost of placing the
communication link over the path. This however does not
match with realistic scenarios, as the most common routing
protocols determine paths based on specific metrics, such as
OSPF which focuses on bandwidth. These, however, can be
implemented without too much effort.

V. RESULTS

In this results section, we will compare the used approaches
toward solving our task placement problem. This coordinator
has been written in Python, using the JMetalPy framework for
the implementation and algorithm fine-tuning [22].

A. Multi-Objective Optimization

We defined the user preference weights as a ranking, ranking
latency first, WCET second, bandwidth third and energy
consumption fourth. The following results will be compared
using different metrics. As we are solving MOO problems,
the concept of dominance is used to compare two solutions.
A solution dominates another solution if every objective is



at least as good, and at least one is better. The dominating
solution is thus considered better as the dominated solution.
However, domination does not account for the full picture, as
we are working with a DM, which has his solution preferences.
This can result in a solution with a good bandwidth usage
and energy cost, but a high latency, when the weights might
indicate that latency is the most important. To solve this, we
compare solutions based on preferences, using Eq. 2. This is
used with normalized objectives and allows us to compare two
different placements conform to the weights, where a lower
cost is better according to the preferences.

B. Use Case

We will build on the use case proposed in [3], which
lies in the automotive sector. Vulnerable road user safety,
such as bikers and pedestrians, is improved by applying
cooperative road user detection near crossings. This requires
the combination of vehicle data and structural sensors, such as
cameras. If any sensor detects an obstacle or road user, an alert
will warn both the driver and the vulnerable road user of the
issue. Moreover, the structural sensors can see more than the
car sensors. This can be used to do predictions on the car’s
path and the vulnerable road user’s path, and predicting or
preventing potential accidents. An example network is shown
in Fig. 4, over which we place a task graph of 15 tasks.

Table IV shows a technique comparison, where an av-
erage result was taken from 100 runs. As the exhaustive
search is a deterministic algorithm, it was only calculated
once. We clearly see that the FC-MOPSO algorithm tends
to outperform both the GA as the NSGA-II algorithm based
on the latency metric. It does make a trade-off at run-time,
taking twice the amount of time. This is caused by the added
evaluation complexity of FC-MOPSO. When considering the
lowest ranked metric, namely energy consumption, the GA
and the NSGA-II algorithms perform considerably worse. This
can be attributed to the search space complexity, including
constraints. If we reduce this by matching, this is no longer
an issue. When looking at the run-time, it is shown that, due to
the reduced complexity, the algorithms with a graph matching
preprocessor do slightly better. However, the average time
for calculating a matching on the use case is 0.25 seconds,
which makes them perform slightly worse. Do note that due
to the numerous constraints, exhaustive search performs well
in this use case, using a parallel fail-early technique. Of the 911

possible placements in an unconstrained scenario (9 free tasks
over 11 devices), 23 million did not violate the constraints,
resulting in about 0.07% viable placements.

C. Algorithm Comparison

The algorithm behaviour is visualised in Fig. 5. The rela-
tive frequency is the frequency of a solution over the total
solutions, and is shown per algorithm over 100 runs. The
FC-MOPSO shows his strength due to the intrinsic capability
of handling constraints. The Genetic Algorithm (GA) is the
worst performer. Due to the single objective optimization,
it is unable to consider his priorities properly. Do keep in

Fig. 4. Use Case

0 1 2 3 4
0

5 · 10−2

0.1

0.15

Normalized Single Objective Function V alue

R
el
a
ti
v
e
F
re
qu

en
cy

Brute Force
NSGA− II

GA
FC −MOPSO

Fig. 5. Use Case Solution quality distribution

mind that the heuristics offer no solution quality guarantees.
Fig. 6 shows us the algorithm’s behaviour with a matched
graph. Due to the reduced search space, the algorithms start
to converge. Although Fig. 5 and Fig. 6 are kept separate for
readability, we wish to point out that although the best solution
that is found in the matched environment is considerably
worse, the algorithms still outperform the regular algorithms.
This search space reduction allows the algorithms to converge
considerably faster, and tends to remove a large part of the
constrained search space. Due to this reduction, dynamic
networks suddenly become considerably more achieveable, as
the exhaustive search can join competitively. Additonally, the
graph matching stays the same as long as the application does
not change, further reducing the search time.

VI. CONCLUSION

In this paper, we defined the complexities of MOO on
the task placement problem, and compared it with SOO. We
show that in this constrained environment, the FC-MOPSO
algorithm excels at finding solutions. When the constraints are
reduced, other algorithms are able to perform as well. We have
also shown under which circumstances graph matching is pos-
sible, and their improvement on the search. This improves the
viability of placement over networks with static applications.
This contribution can be applied to all placement problems,
aiding in further optimization.



TABLE IV
COMPARISON OF AVERAGE OBJECTIVE RESULTS

Latency (ms) WCET (s) Used Bandwidth (MB/s) Energy Consumption (W) Search Time (s)
Exhaustive Search 35 1185 1300 804.4 2349.345

Exhaustive Search-M 39 1392 1680 837.8 1.427
NSGA-II 68 1119 1820 1446.758 0.775
NSGA-M 56 1412 1680 837.496 0.672

GA 79 1332 2110 1308.748 0.741
GA-M 71 1335 2250 760.842 0.708

FC-MOPSO 58 1249 2520 899 1.596
FC-MOPSO-M 40 1416 2050 839.6 1.478

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

Normalized Single Objective Function V alue

R
el
a
ti
v
e
F
re
qu

en
cy

Brute Force
NSGA− II −M

GA−M
FC −MOPSO −M

Fig. 6. Solution quality distribution for matched graphs on use case

VII. FUTURE WORK

As we enter more dynamic networks, task redundancy
should be reviewed to cover for tasks which are on devices
which leave the network. However, as these networks are often
resource-constrained, implementing full redundancy might not
be feasible. An alternative here is failure detection, recovery,
prediction and prevention. An example is predictive mainte-
nance, where hardware is continuously monitored, allowing
the creation of a model of when the hardware is likely to fail,
enabling the replacement before the failure. The complexity
of failure recovery rises considerably when stateful software
is ran on the devices, generating issues such as state storage
and recovery. As we are working with a discrete problem,
issues might arise when trying to locate the pareto front.
This front can be non-continuous, requiring advanced MOO
techniques. More research is required to tweak the algorithm
and parameters so that improved results are achieved. Finally,
attention should be brought to the security aspect of coordina-
tion. Attackers might grab control of the coordinator to force it
to overload certain machines, causing potential failures. Alter-
natively, control of the coordinator allows injecting malicious
software into the network, becoming a botnet orchestrator.

REFERENCES

[1] Cisco, “Cisco Global Cloud Index : Forecast and Methodology 2014-
2019 (white paper),” Cisco, 2016.

[2] ——, “Cisco IOx Data Sheet,” pp. 1–3, 2016.
[3] R. Eyckerman et al., “Distributed Task Placement in the Fog: A

Positioning Paper,” Tech. Rep.

[4] A. Brogi et al., “QoS-aware deployment of IoT applications through the
fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1–8, oct 2017.

[5] E. D. Coninck et al., “Middleware Platform for Distributed Applications
Incorporating Robots, Sensors and the Cloud,” Proceedings - 2016 5th
IEEE International Conference on Cloud Networking, pp. 218–223,
2016.

[6] S. Vanneste et al., “Distributed Uniform Streaming Framework: Towards
an Elastic Fog Computing Platform for Event Stream Processing:
Proceedings of the 13th International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing,” pp. 426–436, 2019.

[7] R. Eyckerman et al., “Requirements for distributed task placement in
the fog,” Internet of Things, p. 100237, Jun. 2020.

[8] ——, “Context-Aware Distribution In Constrained IoT Environments,”
in Proceedings of the 13th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, 2019, pp. 437–446.

[9] Z. Tang et al., “Migration Modeling and Learning Algorithms for Con-
tainers in Fog Computing,” IEEE Transactions on Services Computing,
vol. 14, no. 8, 2018.

[10] K. Deb et al., “A fast and elitist multi-objective genetic algo-
rithm:NSGAII,” vol. 6, no. 2, pp. 182–197, 2002.

[11] V. Mokarram and M. R. Banan, “A new PSO-based algorithm for multi-
objective optimization with continuous and discrete design variables,”
Structural and Multidisciplinary Optimization, vol. 57, no. 2, pp. 509–
533, Feb. 2018.

[12] T. Huybrechts et al., “A New Hybrid Approach on WCET Analysis for
Real-Time Systems Using Machine Learning,” no. 5, pp. 1–5, 2018.

[13] K. Krommydas et al., “OpenDwarfs: Characterization of Dwarf-Based
Benchmarks on Fixed and Reconfigurable Architectures,” Journal of
Signal Processing Systems, vol. 85, no. 3, pp. 373–392, 2016.

[14] C. Liu et al., “Data quality and the Internet of Things,” Computing,
2019.

[15] M. Baldauf et al., “A survey on context-aware systems,” International
Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, p. 263,
2007.

[16] Y. Xia et al., “Combining Heuristics to Optimize and Scale the
Placement of IoT Applications in the Fog,” 2018 IEEE/ACM 11th
International Conference on Utility and Cloud Computing (UCC), pp.
153–163, 2018.

[17] K. Deb, “An Estimation of Nadir Objective Vector Using a Hybrid
Evolutionary-cum- Local-Search Procedure An Estimation of Nadir
Objective Vector,” pp. W–470, 2009.

[18] R. Marler et al., “Survey of multi-objective optimization methods for
engineering,” Structural and Multidisciplinary Optimization, vol. 26,
no. 6, pp. 369–395, apr 2004.

[19] E. Lansing, Investigating the Normalization Procedure of NSGA-III.
Springer International Publishing, 2019, no. May.

[20] K. Deb et al., “Towards estimating nadir objective vector using evolu-
tionary approaches,” GECCO 2006 - Genetic and Evolutionary Compu-
tation Conference, vol. 1, pp. 643–650, 2006.

[21] S. Wang et al., “Integrating Weight Assignment Strategies With NSGA-
II for Supporting User Preference Multiobjective Optimization,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 3, pp. 378–393,
2018.

[22] A. Benı́tez-Hidalgo et al., “jmetalpy: A python framework for multi-
objective optimization with metaheuristics,” Swarm and Evolutionary
Computation, p. 100598, 2019.


