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Abstract—Current Industrial Internet of Things (IoT)
demands are calling for more flexible and programmable net-
works that ensure high reliability in dynamic mission-critical
scenarios. Centralized Software Defined Networking (SDN) offers
the high levels of flexibility and programmability that traditional
distributed IoT protocols cannot offer. However the use of SDN
in IoT is currently not really lifting off due to wireless links
unreliability, excessive control overhead and devices’ limited
resources. In order to reduce the impact of these issues, Whisper
enables SDN-like capabilities in IoT by centrally controlling the
distributed routing and scheduling planes in the IoT network
(Things Overlay). To do so, the Whisper controller sends carefully
computed messages compatible with the standardized distributed
protocols already running in the network that change the default
protocols’ behavior. However, as many other SDN-on-IoT ap-
proaches, Whisper is currently limited to the IoT network scope
and remains as yet another independent network management
silo. In this work, we argue that IoT network control should be
jointly coordinated by the same SDN instance that also manages
the wired segments. In order to do so, we present a new fully pro-
grammable solution that shifts the Whisper scope from the edge
to the core, deploying and testing such architecture in real-world
large-scale testbeds. We use 6TiSCH as Industrial IoT enabler
and the ONOS platform to orchestrate all network segments.
Finally we report the technical challenges, discussing the lessons
learned, and demonstrating the feasibility and suitability of this
Whisper-based solution to provide an efficient and programmable
end-to-end control over a heterogeneous network domain.

Index Terms—IIoT, SDN, Whisper, 6TiSCH, RPL, Flexibility.

I. INTRODUCTION

The concept of Industry 4.0 heavily relies on the use of
Internet of Things (IoT) and Cyber-Physical Systems (CPS)
to revolutionize industrial processes [1]. However, besides the
requirements of low latency, ultra-high reliability and low
power consumption, industrial networks also require to be
flexible and programmable in order to cope with and be further
tailored to the actual and dynamic industrial automation needs.

This flexibility is already being provided in wired tech-
nologies through the use of Software Defined Networking
(SDN). SDN enables network programmability and fine-
grained resource management that is almost impossible to
obtain with traditional distributed network protocols. Through
the centralized decisions of a network controller, devices can
automatically be configured at runtime to be better adapted
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to network dynamics. However, industrial wired networks are
expensive to deploy (from $100s/ft to $1000s/ft) [2], making
them inviable for many potential adopters. Fortunately, the
new advances in Industrial IoT (e.g., 6TiSCH, WirelessHART,
SmartMeshIP) are allowing the IoT to fulfill the Industry 4.0
demands [3], and thousands of networks are currently being
deployed for these purposes [4].

Unfortunately, SDN-like programmability in IoT is still
not being commonly used. The highly resource-constrained
nature of the IoT devices in terms of energy and link re-
liability impede an easy and direct mapping of the wired
SDN techniques to the IoT world. Although a significant
research effort has been done to engineer solutions for these
constraints [5], the in-band signaling overhead, the increase in
energy consumption and the uncoupling between the routing
and scheduling layers remain as open challenges. Among
the existing SDN-on-IoT solutions, Whisper [6] “softwarizes”
the IoT network (creates the Things Overlay) by altering
the standard behavior of the legacy distributed routing and
scheduling protocols running already in the network. This is
done by artificially injecting protocol messages in the network
without the need of adding a new specific SDN-protocol or
modifying the firmware in the already deployed nodes.

However, even when IoT networks can become effec-
tively programmable, these solutions are currently limited to
isolated IPv6 Low-power Wireless Personal Area Networks
(6LoWPANs). In this paper, we argue that Industry 4.0 re-
quires complete end-to-end flexibility that covers both the
wired/optical segment and the wireless segment. We aim to
answer the question of “Can Industrial IoT networks be effi-
ciently and jointly sofwarized along with the core network?”
and will discuss why having such holistic control could be
interesting for the Industry 4.0 (Section II). In order to do so,
we present a new end-to-end Whisper-based solution (Sec-
tion IV) and report our experiences deploying such solution
in real-world large-scale open testbeds (Section V). Finally,
we discuss the challenges and suitability of this approach as a
new promising Industry 4.0 enabler for end-to-end IoT control
over a multi-technology and multi-domain industrial network.

II. WHY END-TO-END FLEXIBILITY?

Industrial automation has been traditionally a rather conser-
vative domain, and higher reliability has often outweighed the
flexibility of the wireless links [7]. However current dynamic
industrial environments demand new levels of network pro-
grammability. For example, energy consumption highly affects
network lifetime. Thus, dynamically managing power is an
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Fig. 1: In Scenario 1 a), the network optimizes energy con-
sumption. Upon network changes b), the flow is reconfigured
along the whole network path to maximize reliability.

essential element of the new Industrial IoT. It is therefore log-
ical, that networks adapt their own configuration to achieve the
best trade-off between performance and energy consumption
according to the actual needs and scenarios.

In this sense, in order to achieve effective industrial
performance, full end-to-end QoS control that includes all
wired/wireless network segments is required (e.g., OPC UA
and TSN) [8], [9]. This is because Industry 4.0 scenarios imply
higher levels of management complexity, where orchestrators
have to control different network domains (e.g., Cloud/NFV,
fog and edge networks, etc.) and ideally, also the IoT de-
vices [10]. Additionally, the core network is often considered
to be always robust and over-dimensioned to cope reliably
with large amounts of traffic. But reality is actually far from
this, and many issues attributed to unmanageable traffic, failed
updates or attacks cause frequent outages and performance
drops in wired networks as well [11].

Let us assume Scenario 1 depicted in Figure 1. Imagine
that the sensor nodes are monitoring the state of industrial
assets in mission-critical or dangerous areas, e.g., through
Supervisory Control And Data Acquisition (SCADA). When
human presence is not detected, nodes are in power-saving
mode and choose the closest neighbor to the 6LoWPAN
Border Router (6LBR) as preferred parent to save energy.
Ultra-high reliability is not required yet so a Packet Delivery
Ratio (PDR) equals to 0.8 is sufficient. This traffic is directed
towards the 6LBR with destination Server H in the core
network (not necessarily outside the factory) and goes through
a level 2 SDN-enabled wired network using any available path
(e.g., through S3) as shown in Figure 1 a).

Now suppose that human presence is detected close to
sensor 6. In order to have more credible sensor readings from
the asset, traffic from sensor 6 requires now high reliability.

To achieve this, it seems logical that the data path from node
6 goes now through node 3 (has a higher PDR). However
in the wired network, reliability could also be compromised
(e.g., a new heavy flow between A and B appears as depicted
in Figure 1 b)). Ideally, the controller should react to these
events by selecting the path with highest end-to-end reliability
according to the new demands (i.e., through node 3 in the
6LoWPAN and through S2 in the wired network).

With this toy example, we argue the importance to have
global, flexible control over industrial networks and why we
need some kind of joint end-to-end “softwarization” in all
network domains. In Section V we will further study this use
case, together with other complementary examples.

III. BACKGROUND AND STATE OF THE ART

A. How to control Industrial IoT?

Within the Industrial IoT ecosystem, 6TiSCH is currently
one of the most growing technologies that combines the
Timeslotted Channel Hopping (TSCH) mode of IEEE
802.15.4e with an IPv6-enabled upper stack. This upper stack
includes the distributed 6Top Protocol (6P) that manages
the scheduling through a Scheduling Function (SF) and
the Routing Protocol for Low-power and Lossy networks
(RPL), an efficient gradient-based distributed routing protocol
designed for resource-constrained devices. Ideally in 6TiSCH,
both scheduling and routing layers need to be coupled to
provide the required performance to each of the next hops
(e.g., capacity and latency in a per hop basis).

However 6TiSCH implements statically defined decisions
(i.e., how routing and scheduling planes accomplish a
predefined objective function) and the new Industrial IoT
requires dynamic on-demand management. Low-power and
Lossy Networks (LLNs) are formed by highly resource-
constrained devices, where links are unreliable and limited in
bandwidth, and the multi-hop wireless mesh topology requires
in-band signaling. This implies that bringing SDN into the
LLNs is challenging. Although SDN-equivalent centralized
approaches have been introduced for 6TiSCH, only concepts
and architectures have been provided so far [12]. Outside of
6TiSCH, SDN-on-IoT solutions exist, such as SDN-WISE,
IT-SDN and µSDN [13], [14], [15]. However these solutions
still rely on a reliable in-band signaling channel and may face
important challenges when scaling up the network due to the
significant signaling overhead. Additionally, they are based
on the non-deterministic content-based ContikiMAC [16],
which cannot be strictly defined as an Industrial IoT protocol.
These approaches do not cater for the required deterministic
performance levels due to the actual uncoupling between
their MAC and routing layers.

On the other hand, other hybrid works such as Whisper [6]
combine SDN techniques with the distributed IoT protocols
present in 6TiSCH. This is the approach we follow in this
paper. Whisper offers a trade-off between total control and
low overhead. Since it leverages RPL and 6P to exert network
control, it is limited to what these protocols can do (e.g.,
routes are required to form a Direction Oriented Directed
Acyclic Graph (DODAG) since RPL is a gradient-based
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Fig. 2: Whisper alters packet forwarding through the injection
of “crafted” RPL messages. Nodes 5 and 6 can avoid to
forward packets towards node 3 upon battery depletion, and
re-route their traffic through node 2 (to not overload node 4).

routing protocol). However, control signaling is minimum
due to Whisper leverages the messages of the already running
distributed protocols, and the IoT network can fully perform
even without the continuous presence of a SDN controller.
This means it is also more energy efficient and scalable that
the previous SDN-on-IoT solutions [6].

Figure 2 shows an example of how Whisper works. In RPL
each node receives a Rank value which is used to calculate the
best path towards the root (R) according to a specific metric,
by default Expected Transmission Count (ETX). Since Ranks
are distributed through DODAG Information Objects (DIOs), a
Whisper controller can inject its own “crafted” DIO messages
that alter the standard behavior of the protocol according
to the controller’s will. Similarly, scheduling is controlled
by delivering artificial 6P messages that complement the SF
running in the network. By default, 6TiSCH networks use the
Minimal Scheduling Function (MSF) [17].

B. How to Orchestrate?

SDN is considered today the tipping point that changed
how networks are built and operated. In SDN, traffic can
be fine-grained steered according to the centralized decisions
of a network controller. This is achieved by allowing the
controller to exert direct control over the network devices at
runtime through a separated control plane that dictates the
required device configuration to fulfill any given policy at
any given time. Network Operating Systems (NOS) [18], [19]
are already commonly used to program network layers in a
platform agnostic manner, decoupling network control from
packet forwarding. In order to virtualize the network, NOSs
mainly rely on controllers to remotely program the packet
forwarding function (e.g., [20]) through a variety of protocols
such as OpenFlow [21], NETCONF [22] or P4Runtime [23].

One of the most extended NOS solution in both research
and production environments is the open-source Open Net-
work Operating System (ONOS) project [24]. ONOS is a
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Fig. 3: ONOS architecture.

distributed, modular SDN control platform that enables high
levels of scalability, availability, and performance in large
operator networks [25]. While ONOS is mainly focused on
the wired segments, some works have studied how to extend
the control to wireless sensor networks as well [26], [27] (e.g.,
by using the non-industrial IoT SDN-WISE solution).

ONOS independently abstracts network devices from the
underlying network architecture in order to permit interoper-
ability between heterogeneous networks. In order to interact
with the underlying network, ONOS uses its Providers, which
are standalone components that can be dynamically allocated
at runtime. Providers translate the device-specific logic to
the abstractions used in the upper layers through the device
drivers, which implement the device communication protocols
(see the complete architecture in Figure 3). The Distributed
Core, stores all information maintained by the system (e.g.,
topology, states, etc.) and provides the upper layers with path
computation functions (e.g., to create/compile path Intents).

Finally, the Northbound sublayer manages the network
abstractions through flow rules and policies. This sublayer
allows applications (e.g., an ARP service, a host mobility
manager, etc.) to consume and manipulate aggregated
information from the Core sublayer. Application functionality
ranges from displaying network topologies (e.g., GUI) to
perform complex traffic engineering for different traffic
classes (e.g., intent-based forwarding).

IV. FLEXIBILITY FROM THE SENSORS TO THE CORE

In this section we present the global architecture that enables
a joint orchestration of both wired and wireless networks.
This architecture integrates in one controller instance different
network domains, including the IoT network (e.g., in our case,
6TiSCH). This is done by deploying different Whisper con-
trollers in the 6LBRs to extend the core network virtualization
also to the IoT domain. The Whisper controllers communicate
with the orchestrator (e.g., in our case, ONOS) to abstract the
IoT network. This abstraction allows monitoring and control-
ling the IoT network in both the routing and scheduling planes.
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In order to translate high-level control abstractions to actual
Whisper primitives, we propose a new Whisper Southbound
(WSB) protocol (detailed in Section IV-A) which is available
through a REST API and which is eventually exerted in the
6TiSCH networks through the Whisper controller located at
the 6LBRs. In order to improve network control, the Whisper
primitives (e.g., a “crafted” DIO to change a node’s next hop)
can be also delivered through Whisper nodes, specific wireless
nodes that can be strategically placed in the network to aug-
ment the monitor and control capabilities [6] (see Figure 4).

Whisper controllers periodically report to the ONOS
controller with network statistics (e.g., topology, link costs,
schedules, etc.). This way the ONOS controller updates its
internal topology stored in its core, and performs actions
according to the policies and applications’ requirements when-
ever needed. These actions are delivered through OpenFlow to
the SDN-capable switches and through WSB to the IoT nodes.
Traffic flows are routed through end-to-end Intents from each
IoT to its final destination. This way, changes in the traffic
paths do not compromise the performance of the flows, since
Intents ensure an end-to-end path based on agreed constraints.
Upon network changes, the Intent will automatically re-route
the flow to accomplish its constraints, both in the wired
segment and in the wireless 6TiSCH segment.

A. The Southbound Whisper protocol

The WSB protocol is an enhanced, generalized version
of the Whisper primitives described in [6] to make them
compatible with a generic SDN controller. Table I describes
the most relevant messages1. It is divided in two parts:
• The Orchestrator-Whisper segment is an abstraction of

the full WSB that hides the complexity of the 6TiSCH
network to the controller (e.g., Ranks, PDR, etc.). It
only consists of 4 messages: ParentSwitch to perform
the re-routing of next hop of a sensor node, Add-
Cell/DeleteCell to manage nodes’ schedules and Net-
workUpdate, which contains incoming aggregated in-
formation from the 6TiSCH network. As they are sent

1The complete set of messages and the detailed byte-level format is
available at https://github.com/imec-idlab/whisper-repository

OFP_HELLO

WSB_NetworkUpdate
WSB_UpdateReport

OFP_FLOW_MOD
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WSB_SwitchRemote

OF Switch Whisper Cont. SensorONOS

Orchestrator - Whisper Whisper - 6TiSCH
WSB

Fig. 5: Example of the messages exchanged, using OpenFlow
for the wired segments and the Whisper Southbound protocol
(WSB) to control the 6LoWPAN network.

through a bidirectional REST API, arguments are en-
coded in JSON format with a timestamp and a sequence
number, so that missing messages are tracked and re-
transmitted if necessary.

• In the Whisper-6TiSCH segment the protocol is aug-
mented with the characteristics of each specific 6TiSCH
network. This means that the Whisper controller trans-
lates the abstracted messages from the SDN controller
to the actual Whisper primitives needed to perform the
SDN controller’s orders. For example, the ParentSwitch
message can be translated to one or more messages in the
6TiSCH network (e.g., it could require a SwitchRemote
message and a PropagateRank message each of them with
specific Rank values, being sent each in a particular or-
der). Likewise, a number of UpdateReports from different
Whisper nodes are aggregated at the Whisper controllers
in one single NetworkUpdate message destined to the
ONOS core. Messages in this segment are sent at byte-
level using CoAP [28].

An example of how the architecture operates is depicted
in Figure 5. First, ONOS receives information about the state
of the network (e.g., links, devices, etc.). Upon decision or
when the new requirements are no longer met, the ONOS con-
troller triggers the network changes through OpenFlow in the
OpenFlow-enabled switches or through WSB in the Whisper
controllers. Upon reception, the Whisper controllers translate
the required action to specific 6TiSCH-aware primitives that
will eventually lead to a routing and/or a scheduling change
in the sensor nodes.

B. Implementation details

In the ONOS controller, the Whisper Provider abstracts the
network information coming from the 6TiSCH network to the
ONOS core, adding and updating links, devices, hosts and
intents. The Whisper Protocol ONOS component feeds the
Whisper Provider with information coming from the actual
WSB through the REST API.

From the point of view of ONOS, sensor nodes are treated
as special wireless switches. However, since sensor nodes
are IPv6-enabled, the Whisper Provider adds virtual hosts to
each sensor node to assign them IPv6 addresses. This way
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WSB Segment Dir Name Arguments Output
DL ParentSwitch NodeA,NodeB ResponseCode

Orchestrator DL AddCell NodeA,NodeB,Cells* ResponseCode,CellList
Whisper DL DeleteCell NodeA,NodeB,Cells*,Clear* ResponseCode

UL NetworkUpdate NodeID,Topology*,LinkCost*,Schedules* none
DL SwitchRemote TargetNode,FirstHop,Rank,ReliableSwitch* ResponseCode
DL SwitchImpersonate WhisperNode,TargetNode,ImpID,Rank,ReliableSwitch* ResponseCode

Whisper DL PropagateRank Rank,NodeID ResponseCode
6TiSCH DL 6PRequest NodeA,NodeB,Cells* ResponseCode,CellList

DL UpdateSolicitation NodeID,Ranks*,Topology*,LinkPDR*,Schedules*,State* ResponseCode
UL UpdateReport NodeID,Ranks*,Topology*,LinkPDR*,Schedules*,State* none

TABLE I: Whisper Southbound messages. DL denotes Downlink and UL denotes Uplink. Optional fields are denoted with *.

Whisper
Southbound 

REST API 

List of Primitives

Select building blocks

Switch Parent

Select primitives

Whisper 
Algorithm

 Whisper 
node 

required

Deallocate CellAllocate Cell

Onos 
Controller

Network 
state

Fig. 6: Whisper controller architecture. Commands from
ONOS arriving from the south-bound interface are translated
to 6TiSCH compatible primitives to exert the control. Monitor-
ing information is aggregated and reported to the orchestrator.

path Intents can be end-to-end created from sensor nodes to
hosts. Intents are controlled with a new weight metric that is
assigned to the links as Annotations (e.g., in order to re-route
an Intent through a certain path, a high value will be assigned
to one of the links in that path). Also, at the application
level, we have extended the ONOS GUI with 6TiSCH-related
components and dashboards (augmented topology, wireless
nodes, schedules, etc.), and a new Whisper command line
interface has been included.

The Whisper controllers are deployed by the 6TiSCH net-
work and are implemented (optionally) inside OpenVisualizer,
a tool to interconnect a 6TiSCH network into the Internet.
OpenVisualizer is included in the OpenWSN project [29],
which is currently the most up-to-date implementation of
6TiSCH. In order to communicate with ONOS, the REST API
is used to send reports and receive commands. In the Whisper
controllers lays the intelligence for translating a network
abstracted command to an actual set of Whisper commands
(primitives) that achieves the desired change on the routing or
the scheduling plane. This is done by following the building
blocks depicted in Figure 6 and applying the algorithms
described in [6]. However, in order to perform any effective
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Whisper
Controller
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Fig. 7: Checking if a link exists: a) source route pings from the
controller (blue), b) probing from the Whisper node (green).

change in the network, information about the 6TiSCH network
has to be actively gathered. Since we assume nodes do not
have any monitoring mechanism built-in (e.g., can be legacy
devices), non-invasive network monitoring is not a trivial task.
We further detail how to do this in the following Section IV-C.

C. Monitoring the 6TiSCH network through Whispering

While the ONOS controller only requires high level net-
work information (e.g., topology, schedules, etc.), Whisper
controllers require to have detailed information about the
state of the network such as Ranks, 6P sequence numbers,
DODAG versions, etc. Some network information is available
at the controller, for example, the DODAG topology is directly
obtained from the Destination Advertisement Object (DAOs)
messages, which arrive to the Whisper controller through the
6LBR to build downlink routes. However the actual physical
topology between neighbors is required to be known before
any route change. Otherwise, the orchestrator would not even
know if a change is actually possible. To check if a link
exists, the Whisper controller can choose between using source
routed pings or through 6P/RPL probing from a Whisper
node (see node W in Figure 7). 6P/RPL probing consists in
making the Whisper node impersonate one of the nodes to
send non-effective 6P commands (COUNT, LIST, or SIGNAL)
for the case of 6P probing, or unicast DODAG Information
Solicitation (DIS) messages for the case of RPL probing, as
shown in Figure 7 where node W impersonates node 6 to
send such messages to node 3. If there is any response from
the impersonated node, it means the link exists. Source routed
pings and RPL probing are the simplest and safest options due
to uncaptured errors in 6P probing could lead to 6P SeqNum
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mismatch between the nodes. Continuous probing is used to
estimate the PDR of a given link.

The 6P SeqNum can also be monitored to both obtain
scheduling information (LIST) and perform scheduling
transactions (ADD/DELETE/CLEAR). Although nor strictly
necessary since SeqNum reset can be forced, it is advisable
to track the SeqNum at any node at the Whisper nodes or the
6LBR (root) to reduce overhead. On the other hand, Rank
values can be obtained either sniffing DIOs in the root or in
the Whisper nodes or by emitting DIS messages to specific
nodes out-of-range. Even though Ranks are initially estimated
at the Whisper controller using the DODAG information
and the default RPL objective function, having the actual
ranks helps to more accurately know the network state
and roughly estimate the link PDRs. Finally, a number of
UpdateReports from different Whisper nodes and 6LBRs is
periodically aggregated at the Whisper controllers. However
only high-level information will be included in one single
NetworkUpdate message destined to the ONOS core.

V. DEPLOYING THE SYSTEM

Let us assume now Scenario 2 as illustrated in Figure 9,
where, as before in Scenario 1 (Section II), sensor nodes
measure the state of critical assets (e.g., vibration level of
a machine). In this case, sensor nodes are centralizing data
in node 2 before sending it to the core, to perform data
aggregation or fusion techniques (e.g., to filter redundant
data). In the core, data is first analyzed in real-time in a
Deep Packet Inspection (DPI) box located in S4 and stored
in H. Imagine now that node 4 detects an anomalous reading.
What a network operator may want here is to closely monitor
that anomalous node 4 with as lowest latency as possible
(skipping the DPI since involves a longer path), to avoid

2

3

6LBR

2

4

6 7

5

 R

S3

S3 

S1

   S2

S5

H

8
Data Fusion 

Cluster

3

6LBR

4

6 7

5

   R

8
Data Fusion 

Cluster

S4 
(DPI)    S3

  S3 

S1

   S2

S5

H
  S4  

 (DPI)          

a) b)

Fig. 9: In Scenario 2, a) shows the situation when the
6LoWPAN aggregates data at node 2. In b), low latency is
required and network is end-to-end reconfigured to achieve it.

future damage in the machine in case readings get over a
threshold. Subsequently, node 7’s next hop has to change
to continue aggregating its readings, letting node 4 isolated.
Therefore, a high-level orchestrator needs to reconfigure the
network both in the wired and wireless segment to match this
new requirement, for example as shown in Figure 9 b).

Within this section we show a realistic, complex deployment
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Fig. 10: Evolution of latency for Scenario 1. First, data
from node 6 is sent directly to the root with some PHY
drops, causing retransmissions. After high-reliability becomes
a requirement, traffic is re-routed using higher quality links
and avoiding saturated links that could cause drops.

of Scenario 1 and 2 in two large-scale open Fed4FIRE+ [30]
federated testbed facilities2. The whole set-up is depicted in
Figure 8. On one hand, the Virtual Wall testbed3, located
in Ghent, Belgium, is used to deploy the OpenFlow-enabled
wired network. The network consists of a set of barebone
switches that run OpenVSwitch 2.9 and are operated through
OpenFlow. An additional server is used as orchestrator, where
a Whisper-enabled ONOS 2.1.0 is deployed to manage both
wireless and wired networks. On the other hand, we use the
CityLab smartcity testbed4 [31], located in Antwerp, Belgium,
to deploy the 6TiSCH wireless network remotely controlled
from Ghent. This network is formed by OpenMotes-CC2538
nodes [32] running OpenWSN Release 1.24. Since the distance
between the two testbeds is 53 Km, the connectivity between
them is done by a GRE tunnel between the 6LBR in CityLab
and the gateway node S1 in the Virtual Wall. In this node, the
gretap interface of the tunnel is added to the Open vSwitch
bridge to be directly managed by the ONOS controller.

As previously presented, Scenario 1 topology is deployed
as depicted in Figure 1. This use case requires to select the
most reliable links in both the wireless and the wired segment
for the target flow. Figure 10 shows the evolution of latency
for data sent from node 6 to host H at a rate of 1 pkt every
3s. Although PHY drops (∼ 19.6%) exist during the power
saving regime, these drops do not actually count as end-to-
end packet loss since retransmissions over different channels
ensure a successful delivery. However, they cause peaks in
latency of about 1 ∼ 2 s as observed in Figure 10. If a packet
is dropped, it will be re-transmitted in the next TSCH frame,
after 101 slots x 10 ms timeslot = 1.01 s (or 2.02 s if two
retransmissions occur).

After t ' 325, the parent of node 6 is changed to ensure
the highest link reliability (PHY drops are now ∼ 3%), and
thus, retransmissions are reduced. However, at t ' 475, the
presence of a saturation flow (from host A to Host B) in the
wired network, compromises the reliability requirement. This

2All used code and experiment traces obtained are publicly available at
https://github.com/imec-idlab/whisper-repository

3https://www.fed4fire.eu/testbeds/virtual-wall/
4https://www.fed4fire.eu/testbeds/citylab/
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Fig. 11: Evolution of latency for Scenario 2. Data from node
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Fig. 12: Distribution of latencies for the control traffic. The
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respectively. Median values (red line) are 0.14, 0.34 and 2.24s.

flow could induce real drops when the queues become full.
For this reason, after the new flow enters, ONOS triggers a
path change in the wired network that reroutes the target flow
to prevent any packet drop, as depicted in the Figure 10.

Similarly, we also presents results on the Scenario 2. In this
case, the topology is changed as depicted in Figure 9 in order
to ensure the lowest low-latency in node 4. The evolution of
the latency of node 4 is shown in Figure 11. Around t ' 140,
node 4 changes his parent to reduce the TSCH latency. This is
achieved not only just by reducing the number of hops to the
root but also carefully choosing the cells that produce lower
latency (e.g., placing the new cells just after the packet is
enqueued). Similarly, at t ' 240, ONOS changes the route in
the wired segment as well in order to skip the DPI and reduce
the number of hops, and eventually, minimizing the end-to-end
latency of node 4 incoming data.

For both scenarios, no modifications have been done in the
firmware of the already deployed nodes. Also, cells have been
pre-allocated beforehand by Whisper to avoid packet drop
during the parent change. All discovering and monitoring tasks
are done in the background since the network bootstrap. This
allows the local Whisper controller to obtain the real topology
and gather routing (e.g., preferred parents and Ranks) and
scheduling information (e.g., used cells).

We have also measured the latency of the complete set up
for the control traffic. To do so, we perform the path changes
described in the Scenario 2 scenario during 5 hours at a rate
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Fig. 13: For each solution, a) required number of control
messages, and b) energy consumed only in signaling overhead.

of 1 time per minute. Figure 12 shows the distribution of
latencies for each segment. This is calculated as the time
elapsed between the time when the command is sent and
the arrival time of the first packet that follows the new rule.
For the case of the WSB protocol, the total time is divided
in two: first, the communication between ONOS and the
Whisper controller (WSB Orchestrator-Whisper) and second,
the actual message injection in the 6TiSCH network done
by the Whisper controller (WSB Whisper-6TiSCH). The time
used in the Whisper-6TiSCH segment is expectedly higher
due to commands are delivered through the wireless medium
(retransmissions may be needed) and can only be transmitted
in specific cells (minimal cell or other dedicated cells).

Finally we have analyzed, for the wireless segment in
the former test, the impact of using Whisper in terms of
number of signaling messages and energy consumption due
to signaling overhead. We have also evaluated the equivalent
required messages and related energy consumption for the
SDN-on-IoT solutions IT-SDN and SDN-WISE. Figure 13
shows that Whisper requires less control messages to perform
the path changes (and required scheduling modifications), and
consequently, a lower energy consumption due to signaling
overhead.

These tests illustrate the performance of the tested networks
when a high-level controller jointly manages them, without
the need to modify the firmware of the already deployed
nodes. While in the wired segment control is exerted with
standard Intent-based OpenFlow rules, the use of Whisper
in the wireless segment allows ONOS to also monitor and
manage the routing and scheduling of the 6TiSCH network.

VI. CONCLUSION

In this work we have introduced relevant examples that
demonstrate the need for a central control that jointly manages
the full end-to-end IoT-Wired domain. From these scenarios,
we have presented a new higher-level solution that leverages
Whisper to exert control in both the wired segments and the
Industrial IoT domain.

In between a fully centralized SDN-on-IoT management so-
lution and a traditional fully distributed one, Whisper seems to
stay as a trade-off solution that has the robustness, scalability
and low-overhead of distributed solutions and the flexibility
and programmability of centralized ones, without the need of
modifying the firmware of the nodes in an already deployed
Industrial IoT network, and thus, no requiring an additional
SDN-specific protocol.

We have also presented the framework that shifts the Whis-
per scope from the edge to the orchestrator, describing the
new Whisper Southbound protocol that enables its integration
with a generic controller. Finally, the presented solution has
been validated by deploying it in real world large scale
testbeds and by testing on them several Industrial IoT use cases
that require flexible end-to-end control over a heterogeneous
network domain.

The results point towards an effective holistic network man-
agement that can fulfill dynamic network requirements (e.g.,
reliability and low-latency). To the initially asked question of
“Can IoT networks be efficiently sofwarized jointly with core
the network?”, these results, together with the presented use
cases, make us confident to affirmatively answer that not only
it is possible, but essential for current Industry 4.0 demands.
Also, while we see this architecture as a promising alternative
for future Industrial IoT deployments and therefore as an
challenging research path, we believe that it is definitively
interesting for IoT legacy deployments, which can benefit
from a fully end-to-end upgraded network control with no
modification in the already-deployed IoT network.
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[31] J. Struye, B. Braem, S. Latré, and J. Marquez-Barja, “Citylab: A flexible
large-scale multi-technology wireless smartcity testbed,” in Proceedings
of the 27th European Conference on Networks and Communications
(EUCNC), 18-21 June 2018, Ljubljana, Slovenia, 2018, pp. 374–375.

[32] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “OpenMote: open-
source prototyping platform for the industrial IoT,” in International
Conference on Ad Hoc Networks. Springer, 2015, pp. 211–222.

Esteban Municio received a Bsc+MSc degree of
Telecommunication Engineering from the Madrid
Polytechnic University (UPM) in 2013 and a MSc
degree in Networks and Computer Systems from
King Juan Carlos University (URJC) in 2014. He
is obtaining his PhD in Computer Science from
the University of Antwerp in February 2020. He is
currently a PhD researcher at the IMEC - IDLab
research group, in the Department of Mathematics
and Computer Science of the University of Antwerp.
He was and is involved in several European research

projects such as TUCAN3G, FLEXNET and INTERCONNECT. His main
research interests are: traffic engineering and SDN network programmability,
flexible and programmable wireless networks and ultra-reliable Industrial IoT.
He is also interested in heterogeneous backhaul networks, smart cities deploy-
ments, community networks and connectivity provision in rural environments.
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