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Abstract: Trends in wireless networks are proceeding toward increasingly dense deployments, supporting
resilient interconnection for applications that carry ever higher capacity and tighter latency requirements.
These developments put increasing pressure on network backhaul and drive the need for a re-examination
of traditional backhaul topologies. Challenges of impending networks cannot be tackled by star and ring
approaches due to their lack of intrinsic survivability and resilience properties, respectively. In support of this
re-examination, we formulate backhaul topology optimization as a graph optimization problem by capturing
both the objective and constraints of optimization in graph invariants. Our graph theoretic approach leverages
well studied mathematical techniques to provide a more systematic alternative to traditional approaches to
backhaul design. Specifically, herein we optimize over some known graph invariants, such as maximum node
degree, topology diameter, average distance, and edge betweenness, and also over a new invariant called node
Wiener impact, in order to achieve baseline backhaul topologies that match the needs for resilient future
networks.

Keywords: Cloud-radio access networks, survivability, resilience, graph theory, graph invariants, topology
optimization, node Wiener impact
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1 Introduction

The capabilities envisioned for the fifth generation of telecommunication networks (5G) demand a broad-

reaching service platform that supports traffic volume, edge data rate, latency, and reliability in both het-

erogeneous and dense scenarios [1]. As such, 5G represents an evolution of more classical network paradigms

with new demands on backhaul networks [2, 3] that must be able to carry several heterogeneous radio access

technologies to power data centers. Notably, the concept of Cloud-Radio Access Networks (C-RANs) employs

optical backhaul for transfer of radio signals for direct processing in data centers, with minimal processing

at base stations. As such, C-RANs represent some of the most demanding use causes for backhauling in 5G

and therefore provide our focus herein.

Cheaper radio equipment composed solely by array of antennas, digital to analog converters, and usually

an optical wired interface, a.k.a. a Remote Radio Head (RRH), will gradually replace current radio base

stations in C-RANs. The RRHs have the capability to upload all their sampled signal workload to be processed

at cloud data-centers, , a.k.a. Baseband Unit (BBU) pools. Far away from the edge, BBU pools centralize

the processing of workload, which provides several benefits, including better energy consumption, simpler

synchronization, and less complicated realizes for new network functions, such as coordinated multipoint

(CoMP) and Joint Transmission (JT).

A C-RAN approach to network design is hampered by four main challenges: (i) high link capacity

demands, (ii) scalability limitations, (iii) strict latency requirements, and (iv) survivability. In the first, the

workload transmitted from RRH to BBU requires a massive quantity of data to be represented, i.e., samples

at rates from 0.6 to 24.3 Gbps for each RRH antenna using Common Public Radio Interface protocol [4].

In the second, C-RAN systems are envisioned to accommodate the workload of high density RANs in BBU

pools ranging from 100 to 1000 RRHs, which demands intricate approaches to designing and managing a

large number of data streams and processing points. In the third, the workload of RRHs must be processed in

time for any responses to be transmitted from the RRH, in accordance with the radio protocol definition [5].

For example, given the processing of the Hybrid Automatic Repeat reQuest (HARQ) protocol, the RRHs

workload must be processed within 3ms to meet protocol requirements [6]. Furthermore, C-RAN systems

must provide guarantees about the degree to which operation can remain unaltered during element failure or

unexpected events; that is, C-RAN must offer some level of survivability [7].

Here, we note that a C-RAN must both continue basic operation in the face of failures or unexpected

events and deliver some degree of quality in doing so. That is, the nature of C-RAN backhauling demands

that a BBU is both able to communicate with its associated RRH and do so within accordance to the radio

protocols employed at the RRH. A basic definition of survivability would require simply that the backhaul

of a C-RAN include a set of paths which supports communication between every BBU and RRH pair after

f failures. Instead we prefer the notion of resilience which requires that after f failures, there is a “good”

set of paths which enables communication between every pair. We conjecture that the notion of resilience

better captures the survivability requirements of C-RAN backhaul than the more basic formulation.

Given this notion of survivability for C-RAN backhauls, we also distinguish between the properties of

basic survivability and resilience in backhaul networks. Here we describe these properties in the case that

f = 1, but the concepts extend to any number of failures. Basic network survivability is guaranteed by

2-connectivity between nodes. Every 2-connected graph survives any single node or link failure, in the sense

that it remains connected, so there is still a path to communicate after the failure. Noting that latency

provides the primary requirement for the goodness of C-RAN backhaul, we consider a network to be resilient

if it has two disjoint paths of limited length connecting any pair of nodes. So, the survivability is guaranteed

by the 2-connectivity and the operation in accordance with radio protocols after failure is guaranteed because

the diameter and the average distance (and, consequently, the latency) are bounded after a failure.

Survivability in C-RAN has been lightly investigated in prior literature. Existing models tend to include

this notion into the consideration of other problems, such as (i) a BBU placement problem or (ii) a control

function split problem. In the first, proposals highlight that better positioning BBUs in the network enable

distribution of the processing capabilities of a C-RAN to tackle latency and scalability issues, as well as
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achieve better survivability in case of unexpected delay occurrence. Whereas, in the second, the radio protocol

functionalities are split between BBUs and RRHs based on the trade-off between the rate required by the

underlying infrastructure and the degree to which processing may be inserted at the edge of the C-RAN. As

a secondary effect of optimizing this split of functionalities, both the link capacity and latency requirements

are eased, in turn improving the margin for absorption of failures. Subsequently, the survivability of C-RAN

networks that are optimized in this manner improves. Extending beyond such existing work, we assume

a broader perspective on survivability by examining the properties intrinsically associated to the topology

planning and refining of backhauling to achieve increased survivability in C-RANs.

In this paper, we propose a method for systematic refinement of existing optical networks toward service

of C-RAN backhaul grounded in graph theoretic optimization. Our approach leverages graph invariants to

quantify the requirements of wireless networks and constraints of backhauling infrastructure. These invariants

provide the means to capture several important features of a backhaul topology including the number of

nodes or edges as well as the maximum degree of nodes, the topology diameter, and the average distance

(or average hop count). Note that these invariants do not depend on the specific technology adopted by the

backhauling network and instead focus on the structure of the topology. Importantly, this aspect of invariants

enables their use in determining the fundamental ability of a backhaul topology to meet latency and resilience

requirements. Moreover, a grounding in graph theory enables the use of mature tools. Therefore, a basis in

graph theory enables our approach to provide fundamental insight into the ability of a backhaul design to

meet the requirements of wireless network and systematically refine this ability. Through refining existing

optical network topologies in service of C-RAN backhaul, we jointly consider the needs of wireless networks

and the associated optical operation.

This paper is organized as follows. In Section 2, we describe our method and present a new distance-based

graph invariant which is related to resilience aspects of the backhaul topology design. Some case studies of the

proposed method are presented in Section 3. Section 4 draw our conclusions and points out future research

directions.

2 Mapping network requirements to graph invariants

The problem of designing network topologies using graph theory may be stated as determining means of

linking a given number n of nodes, where both wireless objectives and backhauling constraints are expressed

in terms of graph invariants. The definitions of all the graph invariants used in this work can be found in the

Appendix A.

In the design of any backhaul network, the most basic constraint is that each element of the network

be connected to the network; in graph theoretic terms, at least one path must connect each pair of nodes,

resulting in the network being a connected graph. Therefore, this requirement outlines a search space for our

optimization. The size of this space grows rapidly with the number of nodes considered within a network:

there are 853 possible connected graphs with 7 nodes and if we simply double the number of nodes, this

number grows to 29003487462848061 [8]. Such a rapid growth of search space prevents the purely exhaustive

search for telecommunication topologies. Given the plug’n play nature of C-RAN, this is even more difficult to

be performed, mainly because the graph is changing dynamically, where RRHs can be dynamically associated

to a different BBU pool when the backhaul become overloaded, preventing pre-processing techniques to be

applied.

Adding constraints related to interconnection of backhauling elements further bounds our search space.

For example, the practical constraint of the number of edges that may be deployed maps into a limitation of

the size of a topology. Alternatively, the number of edges supported by any single node may be constrained

through limiting the degree of nodes. Applied in this manner, invariants provide the means to restrict

the search on the basis of the interconnection constraints of a backhaul network. Even during dynamic

changes occurring in C-RAN, the graph invariants remains as a rule to be followed preventing the problem

aforementioned.
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Once the constraints of potential backhaul interconnection define a space, wireless objectives may be

mapped into graph theoretic terms to guide a search. For example, the betweenness of a edge e in a graph

G measures the proportion of the number of shortest paths among all node pairs in G that pass through e;

as such, this invariant can be used as measurement of potential network congestion. As another example,

since latency is fundamentally limited by propagation delay, the diameter and the average distance invariants

provide the means to describe the fundamental latency performance of a network. Minimization of these

invariants finds topologies with the highest potential for supporting wireless networks with strict latency

requirements. On the usage of the betweenness invariant, the latency requirements for C-RAN, such as

posed by the HARQ protocol, can be better managed defining the exactly topology which would give the

better survivability in case of backhaul overloads, preventing C-RAN to lose connectivity and performance.

Alternatively, the resilience requirements of a wireless network may be described in terms of the effect of

alterations to a topology. For example, traditional tree topologies lack fault tolerance due to collapse upon

loss of any edge or non-leaf node. A need for survivability may be translated into the search for k-connected

graphs, where the value of k is proportional to the level of backhaul fault tolerance required by the wireless

network. Given the dynamic capabilities of C-RAN to readjust the RRHs workload distribution to BBU

pools on the fly, changing the communication topology to achieve better fault tolerance is not just feasible

but required. Therefore, to enhance survivability, the C-RAN topology can be reconfigured online through

different graph invariants to achieve better fault tolerance and resilience.

By describing backhaul interconnection constraints and wireless objectives in this manner, our approach

allows the refinement of existing topologies to address novel challenges. For example, the traditional ring

topology is commonly used for its fault tolerance, but exhibits undesirable latency properties. Specifically,

the ring topology has the maximum diameter of all 2-connected graphs with n nodes [9] and the diameter of

a ring increases from bn/2c to n− 1 after the removal of any edge.

Our approach enables the refinement of the ring topology toward one more suitable for supporting wireless

networks with tight latency requirements. In this case, we may constrain our search space to contain only

topologies with two disjoint paths for each pair of nodes, while minimizing the diameter of the resultant

topology. To this end, we propose a new invariant called node Wiener impact, which provides a measure for

a 2-connected graph G of the impact on the distances between node pairs in the remaining graph when a

node v is removed. This new node invariant is based on well-known invariants: the graph Wiener index [10]

and the node transmission [9].

The Wiener index of a given graph is the half sum of its distance matrix, which represents the total

number of hops that are necessary to interconnect all pair of nodes using the shortest path between them.

If the load is homogeneously distributed among all the node pairs and the routing algorithm considers the

shortest paths, this invariant can offer an intuition on the cost to route data in a network: the lower the

Wiener index, the more likely a network is to route data using a smaller number of hops. The transmission

of a node, on the other hand, is the sum of the distances from this node to all other nodes.

In an ideal solution, all the distances remain the same after a vertex removal and, consequently, there are

at least two disjoint geodesics interconnecting any pair of nodes. This can be achieved if the Wiener index

of the resultant graph is equal to the Wiener index of the original graph subtracted by the transmission of

the removed vertex, for any vertex of the graph. Formalizing this idea, the node Wiener impact of a node v

in a 2-connected graph G, denoted as τv, is defined as:

τv = W (G− v)−W (G) + T (v), (1)

where W (G) is the Wiener index of the original graph G, W (G−v) is the Wiener index of the graph obtained

by removing v from G, and T (v) is the transmission of the node v.

Therefore, the Wiener impact can be used as a more robust way of measuring network resilience in

2-connected networks: the lower the Wiener impact of a node, the lower is the growth of the distances

between node pairs in the resultant graph when that node is removed. In our approach, we consider that a
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network is resilient if it has two disjoint paths of limited length connecting any pair of nodes. The authors

of [11] provide a further study of betweenness, Wiener index, and transmission.

Moreover, our approach offers an extensible method for backhaul design. That is, additional constraints

or objectives may be represented through the incorporation of new invariants. Development of new graph

invariants increase the power of our approach to backhaul design to capture desirable topological properties.

Table 1 summarizes this discussion by showing the mapping of some common network features into graph

invariants.

Table 1: Network requirements and invariants.

Feature Invariant

Cost Order, size, and maximum/average degree

Maximum latency Diameter

Average latency Average distance

Network congestion Edge betweenness, and degree variance

Survivability 2-connectivity

Resilience Node Wiener impact

3 Case studies

In this section, we explore some case studies of backhaul topology design using graph optimization. To

support invariants computation and graph optimization, we selected the AutoGraphiX III1 (AGX) software

in [12, 13]. Initially we examine tree topologies, which are still very popular in access networks due to their

low cost. Although they do not offer survivability, we use this simple architecture to illustrate how graph

optimization can lead to better topological solutions for meeting C-RAN future network requirements. We

then move on to investigate ring-based networks, which offer survivability but not resilience, showing how

graph optimization can improve them. Finally, a real-world network topology is studied to show the practical

implications of graph optimization in the decision making process regarding the C-RAN underlying topology

design.

3.1 Non survivable topologies: trees

This first case study focuses on node interconnection and latency requirements. Table 2 collects the invariants

values of the proposed topologies.

In the search for topologies for a network with 19 nodes, basic interconnection constraints and a minimal

latency objective could be addressed with a classic star topology (tree graph family), shown in Figure 1(a),

which contains only 18 edges (low edge cost), has diameter 2 (low maximum latency), has average distance

1.89 (low average latency), and has Wiener index 324. Unfortunately, analysis shows that this topology is

highly dependent on a central node (maximum degree is 18, and degree variance is 14.41), whose removal

stops the communication between all other nodes. Moreover, the high maximum degree brings implementation

barriers.

Although a high centralized topology would bring some impacts to the network interconnectivity, for

C-RAN such centralization would be perfect for reusing the resources at datacenters. The more centralized a

BBU pool is positioned, bigger is the potential to receive offloaded workload from other RANs to be processed

in the same BBU pools. It means that the operator would not have to spent to much revenue with new BBU

pools by reusing the already deployed ones.

1Available at https://www.gerad.ca/gilles.caporossi/agx.
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(a) (b) (c)

Figure 1: Tree based topologies: (a) Star, (b) Expert [14], (c) Improved solution (AGX).

Table 2: Tree based topologies (19 nodes).

Invariants (a) Star (b) Expert [14] (c) Improved solution (AGX)

Max. degree 18 4 4

Average degree 1.89 1.89 1.89

Degree variance 14.41 1.67 1.78

Diameter 2 6 5

Average distance 1.89 3.18 3.16

Wiener index 324 544 540

Max. / Min. edge betweenness 18 / 18 70 / 18 78 / 18

Despite the benefits that C-RAN would afford from such topology, to minimize the centralization impacts,

an expert could propose the solution shown in Figure 1(b) [14]. This solution effectively reduces the maximum

degree and the degree variance from 18 to 4 and from 14.41 to 1.67, respectively, with the downside of

increasing the diameter from 2 to 6, and increasing the Wiener index from 324 to 544.

Our method allows the further systematic refinement of even the expert’s solution. From the solution

presented in Figure 1(b) and using AGX, our approach obtains the graph shown in Figure 1(c). The op-

timization applied here minimizes the diameter and the average distance, subject to maximum degree less

than or equal to 4. The maximum degree constraint ensures that the gains originally achieved by the expert

are maintained. The result of this optimization only changes one edge to reduce the diameter from 6 to 5

while keeping almost all other invariants, with the only disadvantage of slightly increasing the load on some

edges (maximum edge betweenness goes from 70 to 78, and degree variance goes from 1.67 to 1.78). Alterna-

tively, we could consider different objective functions and constraints in order to improve other topological

parameters. For example, if the constraint on the maximum degree is not so critical to the network design,

we could use maximum degree less than or equal to 5 in order to reduce the diameter to 3. That is, our

approach to topology design enables the systematic exploration of potential topologies and enumeration of

major trade-offs.

3.2 From survivable to resilient topologies: 2-connected graphs

This second case study is focused on survavibility requirements. Information on the invariants values of the

proposed topologies can be found in Table 3.

At first sight, the search for resilient topology solutions for a network with 14 nodes could lead to the

2-connected ring topology shown in Figure 2(a), which contains only 14 edges and has average degree 2
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(low cost). However, as discussed in Section 2, the ring is a poor solution considering latency and resilience

requirements, because the diameter is high (7, in this case) and changes to 13 in case of any node removal.

Moreover, given a fixed number of nodes, the ring is the 2-connected graph maximizing the Wiener index [9].

For a ring with 14 nodes, the Wiener index is 343, and the node Wiener impact of each of its nodes is 70.

With the goal of minimizing these impacts, an expert could propose the solution shown in Figure 2(b) [15],

which attempts to combine the benefits from ring and star topologies. This solution reduces the latency

related invariants (the average distance, from 3.77 to 1.71, and the diameter, from 7 to 2) and the Wiener

index by adding 12 edges from each node to a central node. On the other hand, its benefits are still dependent

on a single node, which is related to the high values for maximum degree (13) and degree variance (6.63). The

maximum and minimum values for Wiener impact (130 and 0, respectively) also demonstrate the significance

of removing this central node on the transmission of the other nodes and, thus, show that the solution is not

resilient.

(a) (b) (c)

Figure 2: 2-connected topologies: (a) Ring, (b) Wheel [15], (c) Improved solution (AGX).

Table 3: 2-connected topologies (14 nodes).

Invariants (a) Ring (b)Wheel [15] (c) Improved solution (AGX)

Nr. of edges 14 26 26

Max. degree 2 13 4

Average degree 2 3.71 3.71

Degree variance 0 6.63 0.20

Diameter 7 2 3

Average distance 3.77 1.71 2.04

Wiener index 343 156 186

Max. / Min. edge betweenness 24.5 / 24.5 10 / 2 12 / 6.5

Max. / Min. node Wiener impact 70 / 70 130 / 0 6 / 0

Once again our solution supports the refinement of this topology to address its faults. Starting with the

solution presented in Figure 2(b) and using AGX, we obtained the graph shown in Figure 2(c). Here the

optimization minimizes the Wiener impact, and the average distance, subject to a 2-connected graph of both

diameter and maximum degree less than or equal to 4. The number of edges is also fixed to 26, which allows

a fair comparison between both solutions with respect to interconnection parameters. The maximum degree

constraint is an example requirement from [14]. Our optimized solution has few drawbacks: the average

distance goes from 1.71 to 2.04, the diameter goes from 2 to 3, and the Wiener index goes from 156 to 186.

On the other hand, it has great positive impact on the maximum degree (from 13 to 4) and the degree
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variance (from 6.63 to 0.20). Moreover, our method heavily improves the topology resilience as shown by the

reduction on the maximum Wiener impact (from 130 to 6).

3.3 From survivable to resilient topologies: a real-world network

In C-RAN, its underlying infrastructure presents two problems: (i) massive initial investment; (ii) ossified

infrastructure. In the former, BBU pools need to be connected to RRHs using redundant optical links

(e.g., ring links) that require site installation and long length links (e.g., ≥ 10 Km) per antenna, hindering

the centralization of BBU pools due to high cost. In the later, the underlying infrastructure after installed

cannot be easily repositioned needing new investments and man-working, compromising the scalability of C-

RAN. Based on these problems, reusing already deployed underlying infrastructure (backhaul) enables the cut

of initial investments also giving new possibilities of deployment, merging C-RAN’s underlying infrastructure

with backhaul.

Although the reuse of the backhaul is crucial to the realization of C-RAN, the survivability of such

hybrid underlying infrastructure may be compromised, mainly because of the different already deployed

infrastructure purposes, such as interconnecting cities or provide connectivity to Internet Service Providers.

Therefore, the goal of this case study is to extend our resilience analysis to a real-world backbone network in

the realization of C-RAN. To this end, we optimize the Brazilian National Research and Educational Network

(RNP) topology,2 which is composed by 28 points of presence, as shown in Figure 3(a). Since the resilience

analysis only makes sense in a 2-connected graph, Figure 3(b) shows the representation of the resultant

25-node topology after the removal of the three nodes that are not part of any cycle. Information on the

invariants values of the proposed topologies can be found in Table 4.

(a) (b)

Figure 3: RNP backbone: (a) Geographical distribution with 28 nodes, (b) Resultant 2-connected graph with 25 nodes.

An analysis of Figure 3(b) shows that the highlighted nodes have high Wiener Impact values (181 and 146),

which tell us that the impact on the overall network resilience of removing these nodes is high. This diagnosis

can drive an expert to connect extra edges in the network in order to reduce the impact of their disconnection.

For example, in the graph of Figure 4(a), the addition of only two extra edges (highlighted in red dashed

lines) to the original graph of Figure 3(b) reduces the maximum Wiener Impact from 181 to 69. This example

2Available at https://www.rnp.br/servicos/conectividade/rede-ipe.
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(a) (b)

Figure 4: Optimization of topology shown in Figure 3(b): (a) Addition of two edges, (b) Minimization of the maximum Wiener
Impact.

Table 4: RNP backbone (25 nodes).

Invariants Original Addition of two edges Minimization of max. WI

Nr. of edges 38 40 38

Max. degree 7 7 5

Average degree 3.04 3.20 3.04

Degree variance 2.12 2.48 0.68

Diameter 5 5 5

Average distance 2.84 2.74 2.76

Wiener index 852 822 828

Max. / Min. edge betweenness 55.17 / 6.50 45.85 / 6.23 32.74 / 12.33

Max. / Min. node Wiener Impact 181 / 0 69 / 0 34 / 0

shows how the analysis of node invariants can be used as an incremental and informed method for increasing

network resilience in an existing network that does not support disruptive changes.

On the other hand, if the goal is to design a new topology from scratch that focuses on resilience, we could

fix the original number of nodes (25) and edges (38) and try to minimize the maximum Wiener Impact. With

this objective function and these constraints in AGX, we were able to find the topology shown in Figure 4(b)

that presents a maximum Wiener Impact value of 34 (against the original 181 value of the original topology).

We can also check in Table 4 that all the other analyzed invariants were improved when compared to the

original topology.

In order to better understand the effects of minimizing the node Wiener impact on the topological pa-

rameters, a worst case analysis was performed for the same topologies analyzed in Table 4. For that end, for

each topology, the node maximizing the Wiener impact was removed from the topology, and the invariants

were computed again. The results are presented in Table 5. Notice that, whereas the diameter of the original

topology has increased from 5 to 9 after the worst case node failure, the diameter of both the improved topolo-

gies has only increased from 5 to 6. Moreover, the average distance of these improved topologies increases

much less (11.68% for the topology shown in Figure 4(a) and 5.43% for the one shown in Figure 4(b)) than

the average distance of the original topology (25%). These results are graphically presented in Figure 5. In

addition, this figure shows that the diameter and the average distance invariants from the optimized topology

of Figure 4(b) are similar to the topology of Figure 4(a), but without the need for adding two additional

edges.
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Table 5: RNP backbone after the worst case node failure (max. WI).

Invariants Original Addition of two edges Minimization of max. WI

Nr. of edges 33 33 34

Max. degree 6 6 5

Average degree 2.75 2.75 2.83

Degree variance 1.85 1.52 0.89

Diameter 9 6 6

Average distance 3.55 3.06 2.91

Wiener index 979 844 802

Max. / Min. edge betweenness 97.5 / 6.58 53.27 / 7.00 39.38 / 10.83

When we optimize the original graph, the output is a improved node interconnection solution that suits

better the defined constraints and objective functions. A final step to implement the solution in real networks

is to map the nodes from the optimized solution into the original node geographical distribution. This is

another problem that can also be tackled with the guidance of graph invariants. For example, a heuristics

may sort the original geographical nodes by traffic load or population aspects and map them to the nodes in

the optimized solution that have the greater values for some specific graph invariant (e.g., degree or Wiener

impact). In addition, this heuristics has to ensure that neighbors in the optimized solution are close in terms

of geographic distance to minimize the cabling costs.
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Figure 5: Invariants after the worst case node failure (max. WI): (a) Diameter, (b) Average distance.



10 G–2016–57 Les Cahiers du GERAD

4 Conclusion and future research directions

In this paper, we proposed a method to the design of resilient backhaul topologies, based on graph invariants.

We also proposed a new invariant, the node Wiener impact, which measures the impact of a node failure to

the distances among the remaining node pairs. We are currently working on a version of the node Wiener

impact invariant for analyzing the impact of link failures.

As demonstrated herein, our graph theoretic approach to backhaul topology design enables the systematic

refinement of backhaul topologies on the basis of wireless network objectives. Furthermore, our method

enables the direct comparison of topologies and examination of trade-offs in network design. Moreover, this

manner of designing network topologies allows us to bring the large knowledge base available within the

graph theory community to overcome telecommunications challenges.

In summary, our solution could provide guidance in the decision making about the impacts on the net-

work when new entities (edges and nodes) are added or removed in the topology. For the C-RAN, this is

fundamental to raise the survivability and make feasible the usage of the backhaul as part of the C-RAN

underlying infrastructure.

This work can be extended in many ways. For instance, in order to implement the interconnection solutions

obtained by our method, an important practical aspect to be further studied is the embedding of the nodes of

a improved solution into the nodes of the original solution. Also, one could use the interconnection solution

as the basis to design an ILP (Integer Linear Program) model that takes into account traffic demands.

Appendix A: Definitions

This appendix defines the main graph theory concepts used in this paper. Basic concepts not defined here

follow the definitions of [16].

Definition 1 (Graph, G = G(V,E)) A graph G = G(V,E) consists of a set V = V (G) of vertices or nodes,

and a set E = E(G) of edges or links, where each edge uv, connects a pair of vertices u, v ∈ G. The order of

G is n = n(G) = |V (G)|, and the size of G is m = m(G) = |E(G)|.

Definition 2 (Connected graph) A graph G is connected if there is at least one path between each pair of

vertices u, v ∈ V (G).

Definition 3 (k-connected graph) A graph is k-connected if and only if there are at least k vertex-disjoint

paths between each pair of vertices u, v ∈ V (G).

Definition 4 (Vertex degree) The number of edges incident to a vertex v ∈ V (G) defines the degree of v.

Definition 5 (Geodesic or shortest path) The shortest path (in number of hops) connecting two vertices

u, v ∈ V (G) is called a uv geodesic.

Definition 6 (Distance between two vertices) The distance between two vertices u and v in a connected

graph G, denoted as dist(u, v), is the length of a geodesic between u and v in G.

Definition 7 (Graph distance matrix) Let G be a connected graph of order n. The distance matrix of G is

an order n matrix such that:

Dist[i, j] =

{
dist(vi, vj), vi, vj ∈ V (G), i 6= j;

0, otherwise.
(2)
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Definition 8 (Graph diameter) The diameter of a connected graph G is the length of the greatest geodesic

in G. More formally, it is given by:

diam(G) = max{dist(u, v); u, v ∈ V (G)}. (3)

Definition 9 (Vertex transmission [9]) Let G be a connected graph. The transmission of a vertex v ∈ V (G)

is defined as:

T (v) =
∑
u∈V

dist(u, v). (4)

Definition 10 (Graph Wiener index [10]) Let G be a connected graph. The Wiener index of G is given by:

W (G) =
∑

u∈V (G)

∑
v∈V (G), v<u

dist(u, v). (5)

Definition 11 (Graph average distance) The average distance of a connected graph G is the Wiener index

of G over the number of pairs of vertices in G.

Definition 12 (Node Wiener impact) Let G be a 2-connected graph. The Wiener impact of a vertex v ∈
V (G) is defined as:

τv = W (G− v)−W (G) + T (v), (6)

where G− v refers to the graph obtained by removing v from G.

Definition 13 (Edge betweenness) The betweenness of an edge uv ∈ E(G) is given by:

buv =
∑

k∈V (G)

∑
l∈V, k<l

skluv
skl

; ∀ uv ∈ E(G), (7)

where skluv is the number of geodesics between vertices k and l (k < l) passing through edge uv, and skl is the

total number of geodesics between k and l.
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