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Abstract—In Vehicular Networks, some applications require a
fast and reliable warning data transmission to the Emergency
Services and Traffic Authorities. Nevertheless, communication is
not always possible in vehicular environments due to the lack
of connectivity. To overcome these issues (i.e., signal propagation
problem and delayed warning notification time), an effective,
smart, cost-effective, and all-purpose RSU deployment policy
should be put into place. In this paper, we propose GARSUD,
a system which uses a genetic algorithm that is capable to
automatically provide a Roadside Unit deployment suitable for
any given road map layout. Simulation results show that our
proposal is able to reduce the warning notification time –the
time required to inform emergency authorities in traffic danger
situations– and to improve vehicular communication capabilities
in different flows of traffic at different times during the day.

Index Terms—Genetic algorithms, Vehicular ad hoc networks,
RSU deployment.

I. INTRODUCTION

Vehicular Networks enable communication among vehicles
themselves, and also among vehicles and traffic management
authorities. Despite the wide variety of applications for In-
telligent Transport Systems (ITS) that lie under the umbrella
of vehicular networks, traffic safety applications have been
undoubtedly one of the most studied in the last years, due to
the benefits that they clearly offer to drivers and passengers.

Vehicular Networks include vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications. Roadside
Units (RSUs) are infrastructure communication nodes within
vehicular networks, playing an important role in vehicular
communications since they can: (i) deliver important infor-
mation to vehicles, (ii) forward received messages to final
recipients, or (iii) provide Internet access to vehicles. To sum
up, RSUs are deployed to extend vehicle coverage and to
improve network performance in vehicular networks [1].

RSUs are usually expensive to install and to maintain,
thus there is a trade-off between full coverage (in terms of
connectivity) through RSUs and their deployment cost. Hence,
authorities tend to limit the number of RSUs, especially in
suburbs and areas of less population, making RSUs a scarce

resource in vehicular environments. We consider that it is
important to optimally deploy a limited number of RSUs in
the most appropriate locations (i.e., those that clearly extend
coverage and improve the overall network performance). In
fact, it would be necessary to find an automatized method to
obtain the best locations for the RSU to be deployed in each
scenario, due to the great variation of urban street layouts.

In this work, we propose GARSUD, a Genetic Algorithm
for Roadside Unit Deployment in VANETs, and compare it
against other deployment policies. We compare it with both
Geographic-based (i.e., the Uniform Mesh Deployment Policy)
[2] and the Density-based Road Side Unit deployment policy
(D-RSU) [2] approaches. Our goal is threefold: (i) to reduce
the deployment cost, (ii) to automate the deployment decision,
as well as (iii) to increase the communication capabilities of
the vehicles in the scenario, in terms of reduced warning
notification time, i.e., the time required to send warning
messages to the emergency authorities.

II. RELATED WORK

Several works related to RSU deployment policies have
been proposed so far, including different approaches to de-
termine the number of RSUs required to provide a functional
RSU deployment in terms of connectivity within a given sce-
nario [3]. This sort of approaches are focused on reducing the
number of RSUs required [4], improving the overall network
performance [5], or guarantying the Quality-of-service (QoS)
in vehicular networks when delivering data [6].

The work presented in [7] used an evolutionary-based ap-
proach to solve the RSU deployment problem but surprisingly,
authors neither provided details about how they modeled com-
munications between vehicles and RSUs, or the improvement
achieved in terms of vehicles’ connectivity.

To the best of our knowledge, the majority of proposals are
focused on very specific scenarios (i.e., roadmap layouts and
vehicle densities) and consider too simplified assumptions.
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III. GARSUD: AUTOMATIC RSU DEPLOYMENT

RSU deployment approaches, based on fixed placement
using geometrical rules, present bold limitations such as areas
without coverage, or unbalanced load (i.e., some RSUs ex-
hibiting extremely high network activity while others do not).
In order to overcome such limitations, we propose GARSUD,
a Genetic Algorithm for Roadside Unit Deployment.

Genetic Algorithms (GAs) are so called because they are
inspired by biological evolution and its genetic-molecular
base. Genetic algorithms need to establish a relation between
the set of solutions to a problem, called phenotype, and the
set of individuals in a natural population. This is achieved
by encoding information of each solution in a string, usually
binary, called chromosome or genotype. The symbols that
form the string are called genes. The populations of possi-
ble solutions encoded as genotypes evolve through iterations
called generations, and thereby obtaining for each genotype
the corresponding phenotypes which are evaluated by using
some measure of fitness. The next generations are generated
by applying the following genetic operators repeatedly: Parent
selection, Crossover, Mutation, and Replacement. The selected
values for the different configuration parameters were obtained
through extensive testing in order to provide the best results
in terms of optimization time and optimality of the solutions
found.

Even if genetic algorithms may take a considerable amount
of time to compute, the longer the evolution lasts, the better
solutions are found (reaching the global optima if the param-
eters of the algorithm are adequately tuned). Notice that in
real scenarios and prototypes, RSU deployment is not done
on the fly or dynamically in real time. A RSU deployment
is a well thought process design, therefore, the computational
process time that an algorithm takes will not impact the design.
GARSUD algorithm is executed before the RSU installation
and deployment to decide the most suitable places for them.
Our tests showed an execution time up to 4 hours in single
Core i5 machine, which is a very reasonable time for a
deployment policy lasting several weeks.

• Representation of individuals
Each possible solution of the problem needs to be codified

in a genotype before applying the genetic operators. Possible
solutions of the RSU deployment problem would include
the location for all the available RSUs, which constitutes
the phenotype. GARSUD assigns a unique number to each
possible location for the RSUs, and the genotype of each
solution contains a sequence of numbers representing the
location selected for each RSU, as depicted in Figure 1.

• Parent selection
The parent selection phase compares the individuals in the

current population to select the fittest of them to transmit their
genetic information to the next generation. In GARSUD, this
stage is performed by using tournament selection [8] in which
k random individuals in the population are compared, and the
one presenting the highest fitness value becomes a potential
father of new individuals.

Fig. 1. Representation of individuals in GARSUD.

• Crossover
The recombination or crossover operator combines two

parents to generate a new individual. GARSUD uses the
default recombination operator in Genetic Algorithms, i.e., the
1-point crossover [9].

• Mutation
The mutation operator is used to introduce diversity in

the population, thereby avoiding local minima solutions [10].
GARSUD specifically adapts the mutation probability to the
size of the genotype, making one change in each individual
on average.

• Replacement
The replacement, also known as selection of survivors or

environmental selection, is usually implemented by means of
generational replacement, where the new offspring completely
replaces the individuals from the last generation. GARSUD
assures that the best values stay alive in future generations.
In particular, it uses a steady-state scheme [11] where only a
fraction of the individuals are replaced (those with the lowest
fitness values) to ensure that the best values obtained so far
survive in future generations. In our approach, the fraction of
individuals replaced in each generation is set to 50%.

• Fitness function
The target function to maximize, also known as fitness

function, summarizes in a single numerical figure how close
the given design solution is to meet the overall specification
requirements. The RSU deployment problem we are targeting
aims to achieve low notification time for warning messages to
the emergency authorities.

Since the RSU deployment is fixed, the fitness function
should reflect the results obtained for the different traffic flows
that could be found during a single day in a particular city. The
approach followed calculates the average warning notification
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time in each scenario tested to assign a uniform importance
to every possible vehicle density. The fitness function that
guides GARSUD is indicated in 1, where wnt(i) represents
the average warning notification time measured in scenario i,
and N is the number of tested scenarios.

GARSUD Fitness(s) =
100∑N

i=1 wnt(i)

N + 1.0
(1)

The GARSUD fitness function provides values between 0
and 100, whereas 0 represents the worst possible result where
the warning notification time is maximum, and 100, when the
warning notification time is low, close to 0.

GARSUD makes use of Evolutionary Computation, more
specifically Genetic Algorithms, to test different configurations
and guide the search process to maximize the value of the
objective function. Testing all the possible configurations is
unfeasible time- and resources-wise, due to the high amount
of possible combinations of locations for the RSUs, even when
considering small map layouts. For instance, deploying only
5 RSUs in a map with 200 possible locations for each RSU
could produce

(
200
5

)
= 2.53565004e+9 different deployments.

Considering, for example, that our well-equipped computation
power allowed us to evaluate 1000 deployments per second
(which requires a high computing performance), it would
require more than 29 days of computing time to determine
the optimal deployment for only one small specific scenario.

GARSUD requires a map of the target area including the
street and junctions layout, the possible obstacles interfering
with the wireless radio signal, mobility traces representing the
behavior of the traffic using realistic vehicle densities, and
the number of RSUs to be deployed in the area. Using this
information as input, our proposal computes a location for
every RSU increasing the coverage provided and reducing the
notification time of warning messages in the given scenario.

GARSUD performs the following steps to obtain a suitable
RSU deployment: First of all, it makes an initial random RSU
deployment, secondly, it simulates this specific scenario by
using a modified version of ns-2 simulator, which allows us to
calculate the solution fitness. After that, it performs the parent
selection, the crossover, and the mutation operations. Finally,
it evaluates the fitness of the new solution, makes the partial
replacement, and checks whether the termination condition is
fulfilled. If not, it performs again the parent selection process
and repeats the subsequent operations. Table I summarizes the
parameters defined in GARSUD.

IV. SIMULATION ENVIRONMENT

In this section, we present the simulation environment
that we have set and used to assess the performance of
our proposal. Since deploying and testing crowded Vehicular
Networks is not feasible due to economic costs, we used
simulation as an alternative to real implementation.

Concerning the simulated map layout, we selected the
city of Madrid, located in Spain, as the target location to
simulate the RSU deployments. In our previous work [12],
we demonstrated that the area around the Gran Via Street in

TABLE I
PARAMETERS USED IN GARSUD

Representation Integer strings [1..#RSUs]
Recombination 1-point crossover
Recombination probability 95%
Mutation probability 1 gene/individual (avg.)
Parent selection Tournament k = 2
Survival selection Steady-state
Generational Gap 50%
Population size 8
Initialization Random
Termination condition 20 generations
Number of executions 5

Madrid provides a standard environment for radio message
propagation.

The mobility of vehicles, at macroscopic level (i.e., global
motion constraints such as streets, roads, junctions, and traffic
lights), was obtained with the CityMob for Roadmaps (C4R)1,
a realistic traffic generator software based on SUMO [13].

The mobility at the microscopic level (i.e., movements of
each vehicle and its behavior with respect to others) has
been modeled following two different mobility patterns, thus
evaluating our proposal under different mobility conditions.
In particular, we used (i) the Krauss model, including traffic
lights and multi-lane behavior [14], and (ii) the Downtown
model [15], which additionally considers that urban areas
can present different vehicle densities, i.e., vehicles may not
be uniformly distributed and there are points of interest that
may attract the vehicles. This methodology probes that our
approach provides suitable RSU deployments regardless the
special characteristics of the traffic distribution in the map.

We have used the ns-2 simulator [16] to perform our
simulations, including the IEEE 802.11p [17] standard so
as to closely simulate the WAVE standard. In terms of the
physical layer, the data rate used for packet broadcasting is
of 6 Mbit/s, as it is the maximum rate for broadcasting in
the IEEE 802.11p. The simulator was also modified to make
use of our Real Attenuation and Visibility (RAV) propagation
model [18], which increases the level of realism of the
vehicular network simulations by accounting for real urban
roadmaps and obstacles that have a strong influence on the
wireless impairments, hence the signal propagation. The RAV
model is based on real-world measurements and accounts for
attenuation and fading due to radio obstacles.

With regard to data traffic, vehicles operate in two modes:
(a) warning mode, and (b) normal mode. Warning-mode
vehicles inform other vehicles about their status by sending
warning messages periodically (every Tw seconds). These
messages have the highest priority at the MAC layer. Normal-
mode vehicles enable the forwarding of the warning packets
and, periodically (every Tb seconds), they also send beacons
with information such as their positions, speed, etc. These
periodic beacons are not propagated by other vehicles and

1C4R is freely available at http://www.grc.upv.es/software/
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TABLE II
PARAMETER VALUES FOR THE SIMULATIONS

Parameter Value
mobility generator C4R [19]
number of vehicles 100, 200, 300, 400
simulated area 2000m× 2000m
simulated layout Madrid
mobility models Krauss [14] and

Downtown model [15]
maximum acceleration of vehicles 1.4 m/s2

maximum deceleration of vehicles 2.0 m/s2

driver reaction time (τ ) 1 s
number of warning mode vehicles 3
message size 512Bytes
message rate 1 per second
MAC/PHY IEEE 802.11p
maximum transmission range 400m
warning message priority AC3
normal message priority AC1

they have a lower priority than warning messages. The desired
RSU deployment should be suitable for a wide range of vehicle
densities, thus we tested different number of vehicles involved
in the simulations: 50, 100, 200, 300, and 400. Table II shows
the representative parameter values used in our simulations.

V. SIMULATION RESULTS

In this section we present the results obtained using our
proposed GARSUD algorithm. To ensure that results we have
obtained are representative, all the results included in this
paper represent an average of 3 repetitions.

A. Performance of the Genetic Algorithm used by GARSUD

As aforementioned, we tested GARSUD with the Madrid
layout using several vehicle densities, representing different
flows of traffic at different times during a day. Existing
approaches are able to obtain good results assuming a single
vehicle density only. However, GARSUD is capable to find a
suitable deployment for a wide range of densities.

Figure 2 presents the evolutionary process in terms of fitness
of the best and average individuals (representing possible
deployments) using GARSUD in two different scenarios, i.e.,
deploying 4 RSUs and 9 RSUs, respectively. As shown, the
genetic algorithm is able to guide the search process obtaining
iteratively better solutions as generations advance. The shape
of the function is typical of this kind of algorithms: first
generations provide a steep improvement of the target func-
tion until the solutions start to converge towards the nearest
maximum. Nevertheless, there are some sudden improvements
in the best value, as the mutation operator allows searching
new areas of the solution space where new maximums can be
found. Let’s remember that the main objective is to reduce the
warning notification time, and a fitness value of 100 represents
a warning notification time equal to 0 seconds.

Regarding the obtained fitness values, it is noticeable how
increasing the number of RSUs deployed improves the value
of the target function of the solutions. As using more RSUs
allows us covering a wider area in fewer hops, this result was

expected. In addition, since the fitness value is obtained by
combining the warning notification time values for the selected
vehicle densities, the search process ensures more efficient
deployments as it progresses.

Another view of the evolutionary process is presented in
Figures 3 and 4. In particular, these figures depict the RSU
locations provided by GARSUD when deploying 4 and 9
RSUs, respectively. To better understand the evolutionary
process, four intermediate locations selected during the first
stages of the algorithm are presented (i.e., from generation 0
to 20, from generation 20 to 40, etc.).

As shown, when only 4 RSUs are available to be deployed,
the initial random deployment is widely modified during the
first generations, achieving a completely different distribution
of RSUs after 20 generations. This corresponds to the major
gain in the fitness of the solutions as previously mentioned.
After this stage, some RSUs are assigned to their final position.
However, noticeable variations in location are shown for the
rest of RSUs, even if these location changes are minor as the
algorithm advances.

Figure 3(e) presents the average warning notification time
when considering different vehicle densities. The warning
notification time is greatly reduced with each new generation
of solutions for almost all the selected densities, especially in
low-density scenarios. More specifically, it is reduced from
30.25s to 5s when only 100 vehicles are present in the
scenario, which represents over 80% of improvement. It is
noteworthy how the algorithm slightly worsens the results
for 200 vehicles after 20 generations, but it is only due to
the overall improvement when the rest of densities are taken
into account for the analysis. The final reduction is about
80% for 200 vehicles, and about 60% for 300 vehicles. The
improvement when simulating 400 vehicles is very reduced,
since increasing the density of vehicles over this threshold
increases the probability of finding a connected path of vehi-
cles between the sender vehicle and an RSU even when using
random deployments.

Figure 4 shows how increasing the number of RSUs to 9
presents a slightly different trend in the behavior of the algo-
rithm. The number of possible deployments grows drastically
when more RSUs are considered, and thus more generations
are needed until convergence (as previously evidenced by
Figure 2). The search space is bigger and the random nature of
the process makes it possible to find new optima during longer
stages of the algorithm. As shown, the locations of several
RSUs are modified during the first 60 generations, and after
that, 8 RSUs are placed in their final location; only one of them
is moved. Finally, Figure 4(e) shows that the biggest improve-
ment in terms of warning notification time is obtained during
the first 40 generations. The last 20 generations only provide a
slight reduction when 100 vehicles are simulated. These results
prove that random RSU deployments are highly inefficient
for low vehicle densities, and the effect of traffic distribu-
tion should be taken into account to obtain efficient RSU
deployment policies. Our proposal, as it relies on a genetic
algorithm, requires relatively high computational resources and
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Fig. 2. Fitness evolution of the individuals in the populations using GARSUD in the Madrid scenario when deploying (a) 4 RSUs and (b) 9 RSUs.

it can be slower than other different approaches. However,
these requirements are negligible, especially compared to the
time and efforts required to make the real deployment of
communication infrastructure in the urban environments.

B. Performance comparison between GARSUD and other
existing approaches

So far, several schemes have been proposed to achieve an
efficient RSU deployment in a given scenario. For example, the
Geographic approach [2] tries to provide a balanced coverage
of an area by maximizing the distance between RSUs. We
slightly modified the Geographic approach to place each RSU
in main crosses making it easier the communication with
vehicles. On the contrary, the D-RSU scheme [2] requires a
previous knowledge of the distribution of traffic to perform
an asymmetric deployment, assigning less RSUs to the areas
with higher vehicle densities (where the wireless multi-hop
communication is easier), while increasing the number of
RSUs to cover areas with fewer vehicles where communication
is often blocked by buildings and other obstacles. Other
approaches proposed by different authors do not provide
enough implementation details in order to implement them
and perform a fair comparison. Therefore, we selected our
own well proven algorithms as a comparison basis.

In this section we compare the performance of our proposed
GARSUD algorithm against these two existing schemes in
terms of warning notification time. In particular, the Ge-
ographic distribution does not account for different traffic
densities in different areas; it tries to increase the coverage
area by regularly deploying the available RSUS. Instead, the
D-RSU assigns a fixed number of RSUs to each subarea (i.e.,
downtown and outskirts) depending on the vehicle densities
expected. However, the D-RSU does not consider the street
layout to find the most suitable location for the available RSUs,
but it applies a geographic mechanism to each individual
subarea given the number of RSUs to be deployed.

Figure 5 presents the average warning notification time
in the selected layout for the studied densities, while using
a Geographic deployment, the D-RSU, and our GARSUD

approach. As demonstrated, GARSUD outperforms all the
previous schemes, reducing the time required to notify safety
authorities about dangerous situations. This improvement is
especially noticeable in low-density situations, where GAR-
SUD only requires 25% and 15% of the time needed when
4 and 9 RSUs are deployed using other RSU placement
schemes, respectively. Note that increasing the density of
vehicles over 400 vehicles (i.e., 100 vehicles/km2) reduces
the overall performance of the system due to high densities
tend to increase the contention and collisions in the shared
transmission medium, forcing the packet retransmission and
delaying the overall dissemination system. However, this effect
is reduced when GARSUD is used by selecting the most ade-
quate location, for example RSUs are placed in the junctions
where the average wireless traffic does not exceed the capacity
of the channel. As a performance indicator, each solution took
about 4 hours to complete running in a single core of an
Intel Core i5 processor, a time that could be further reduced
implementing parallelization techniques to run in several cores
at the same time. However, the algorithm only needs to be
executed beforehand the deployment of the RSUs, i.e., it is
not necessary to provide real time results and the algorithm
could be re-run if noticeable changes in the traffic patters are
detected, which are not likely to change in short term, reducing
the importance of the optimization time.

VI. CONCLUSIONS

Roadside Units (RSUs) are a key component in Vehicular
Networks since they propel the communication capabilities of
the vehicles either forwarding important messages or providing
connectivity to vehicles, drivers, and passengers.

In this paper, we propose GARSUD, a genetic-algorithm-
based RSU deployment scheme that is capable to automat-
ically determine a suitable RSU location for fast warning
message delivery in any particular roadmap layout. Simulation
results demonstrate that our proposal is able to reduce the
warning notification time under different density scenarios,
and when a different number of RSU should be deployed.
Additionally, GARSUD improves vehicular communication
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Fig. 3. Evolution of the deployment of 4 RSUS in the Madrid scenario using GARSUD: (a) after 20 generations, (b) after 40 generations, (c) after 60
generations, and (d) after 80 generations. The evolution of warning notification time for each vehicle density is shown in (e).
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Fig. 4. Evolution of the deployment of 9 RSUS in the Madrid scenario using GARSUD: (a) after 20 generations, (b) after 40 generations, (c) after 60
generations, and (d) after 80 generations. The evolution of warning notification time for each vehicle density is shown in (e).
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Fig. 5. Warning notification time in Madrid when varying the density of vehicles and deploying (a) 4 RSUs and (b) 9 RSUs.

capabilities since it increases the probabilities that warning
messages can be received by emergency services. To the best
of our knowledge, existing approaches are able to obtain
good results under a single vehicle density. Our proposal
has proved to pinpoint suitable solutions for a wide range
of densities, thereby increasing the probability of successful
reception of warning messages by emergency services under
different conditions.
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